POOMA Tutorials

Download tutorials.pdf (printable/viewable PDF document containing all tutorials).

Contents

Introduction

Background and Terminology

A Laplace Solver Using Simple Jacobi Iteration

Red/Black Update

Calculating Residuals

Further Topics

Pointwise Operations

Indirect Addressing

Meshes, Centerings, Geometries, and Fields

More on Meshes, Centerings, Geometries, and Fields

Particles

Particles and Fields

Text Input and Output

Object Input and Output

Compiling, Running, and Debugging POOMA Programs

Appendices

A Quick Self-Test

file:///E|/r2/html/index.html (1 of 2) [11/1/1999 7:01:21 PM]

file:///E|/r2/html/tutorials.pdf
file:///E|/r2/html/tut-05.html

POOMA Tutorials

Managing Threads Explicitly

Recommended Reading

Legal Notice
New Material
Text I/0

Object I/O

New Tensor functionality

Subscriptable expressions

Component views

Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/index.html (2 of 2) [11/1/1999 7:01:21 PM]

http://www.acl.lanl.gov/pooma/

POOMA Tutorials: Introduction

Parallel"Object-Oriented "
Methods.and Applications ™

POOMA Tutorials
Introduction

This document is an introduction to POOMA v2.1, a C++ classlibrary for high-performance scientific computation.
POOMA runs efficiently on single-processor desktop machines, shared-memory multiprocessors, and parallel
supercomputers containing dozens or hundreds of processors. What's more, by making extensive use of the advanced
features of the ANSI/ISO C++ standard---particularly templates---POOMA presents a compact, easy-to-read interface
to itsusers.

Earlier releases of POOMA v2 provided multi-dimensional arrays using awide variety of storage schemes and parallel
decompositions, multi-threading, and out-of-order execution for maximum performance. This release adds fields,
coordinate systems, meshes, efficient differential operators, and particles. POOMA v2.2, which will be released in
early November 1999, will support efficient distributed-memory parallelism.

To see why you might want to build your programs using POOMA, consider the following simple Laplace solver
using Jacobi iteration on afixed-size grid:

#i ncl ude "Pooma/ Arrays. h"
#i ncl ude <i ostreane

/!l The size of each side of the donain.
const int N = 20;

i nt
mai n(
i nt argc, /| argument count
char * argv]] /1 argunent |ist
) {
/1l The array we'll be solving for
Array<2> x(N, N);
X = 0.0;

/1 The right hand side of the equation (spike in the center)
Array<2> b(N, N);

b = 0.0;

b(N2, N2) = -1.0;

/1l Specify the interior of the donmain
Interval <1> 1 (1, N2), J(1, N2);

/] lterate 200 tines
for (int i=0; i<200; ++i)
{

}

x(1,J) = 0.25%(x(1+1,J) + x(1-1,3) + x(1,3+1) + x(1,3-1) - b(1,d));

file:///E|/r2/html/introduction.html (1 of 3) [11/1/1999 7:01:27 PM]

POOMA Tutorials: Introduction

// Print out the result
std::cout << x << std::endl;

}

The syntax is very similar to that of Fortran 90: a single assignment fills an entire array with a scalar value, subscripts
express ranges as well as single points, and so on. In fact, the combination of C++ and POOMA provides so many of
the features of Fortran 90 that one might well ask whether it wouldn't better to just use the latter language.

The simple answer is that the abstraction facilities of C++ are much more powerful than those in Fortran. A more
powerful answer is economics. While the various flavors of Fortran are till the lingua franca of scientific computing,
Fortran's user base is shrinking, particularly in comparison to C++. Networking, graphics, database access, and
operating system interfaces are available to C++ programmers long before they're available in Fortran (if they become
available at all). What's more, support tools such as debuggers and memory inspectors are primarily targeted at C++
developers, as are hundreds of books, journal articles, and web sites.

Until recently, Fortran has had two powerful argumentsin its favor: legacy applications and performance. However,
the importance of the former is diminishing as the invention of new agorithms force programmers to rewrite old
codes, while the invention of techniques such as expression templates has made it possible for C++ programs to

match, or exceed, the performance of highly optimized Fortran 77.

POOMA was designed and implemented by scientists working at the Los Alamos National Laboratory's Advanced
Computing Laboratory. Between them, these scientists have written and tuned large applications on almost every
commercia and experimental supercomputer built in the last two decades. As the technology used in those machines
migrates down into departmental computing servers and desktop multiprocessors, POOMA isavehiclefor its
designers experience to migrate as well. In particular, POOMA's authors understand how to get good performance out
of modern architectures, with their many processors and multi-level memory hierarchies, and how to handle the subtly
complex problems that arise in real-world applications.

Finally, POOMA is free for non-commercia use (i.e., your tax dollars have already paid for it). Y ou can read its
source, extend it to handle platforms or problem domains that the core distribution doesn't cater to, or integrate it with
other libraries and your current application, at no cost. For more information, please see the license information

included in the appendix.

Of course, nothing is perfect. At the time of this release, some C++ compilers still do not support the full ANSI/ISO
C++ standard. Please refer to the appendix for alist of those that do.

A second compiler-related problem is that most compilers produce very long, and very cryptic, error messages if they
encounter an error while expanding templated functions and classes, particularly if those functions and classes are
nested. Since POOMA uses templates extensively, it is not uncommon for asingle error to result in severa pages of
complaints from a compiler. The appendix on error messages discusses some strategies that can be used to find the
root cause of such errors. Programs that use templates extensively are also still sometimes slower to compile than
programs that do not, and the executables produced by some compilers can be surprisingly large.

Finally, some debuggers still provide only limited support for inspecting templated functions and classes. All of these
problems are actively being addressed by vendors, primarily in response to the growing popularity of the Standard

Template Library, or STL. Once again, the large (and growing) user base for C++ means that scientific programmers
can take advantage of the fact that even the best tools are constantly being improved.

The body of thistutorial starts with a discussion of the background to POOMA, including key technologies such as
caching, compiler optimization, and C++ templates. The individual tutorials take a simple program---the Laplace
solver shown earlier---and add more and more functionality to it, until it is able to run on multiple processors and to
control its own termination by calculating user-defined residuals.

Before you start reading these tutorial's, however, you may wish to take alook at the short quiz included in the
appendix. POOMA does require some familiarity with some of the less well-known features of C++; if you do not feel
comfortable with the questions and their answers, you may wish to have alook at one of the books in the
recommended reading list before proceeding.

file:///E|/r2/html/introduction.html (2 of 3) [11/1/1999 7:01:27 PM]

file:///E|/r2/html/compilers.html
file:///E|/r2/html/errors.html

POOMA Tutorials: Introduction

Y ou may also wish to look at the POOMA web site for updates, bug fixes, and discussion of the library and how it can

be used. If you have any questions about POOMA or itsterms of use, or if you need help downloading or installing
POOMA, please send mail to poorma@cl . | anl . gov.

[Home] [Next]
Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/introduction.html (3 of 3) [11/1/1999 7:01:27 PM]

http://www.acl.lanl.gov/pooma
mailto:pooma@acl.lanl.gov
http://www.acl.lanl.gov/pooma/

POOMA Tutorials: Background and Terminology

Parallel Object-Oriented
Methods.and Applications

POOMA Tutorials
Background and Terminology

Contents.
Introduction
Modern Architectures
POOMA's Pardllel Execution Model
Optimization
Templates
The Standard Template Library
Expression Templates

Introduction

Object-oriented programming languages like C++ make development easier, but performance tuning harder.
The same abstractions that allow programmers to focus on what their program is doing, rather than how it is
doing it, also make it harder for compilers to re-order operations, predict how many times aloop will be
executed, or re-use an area of memory instead of making an unnecessary copy.

For example, suppose that aclass FI oat Vect or isbeing used to store and operate on vectors of floating-point
values. Aswell as constructors, a destructor, and element access methods, this class also has overloaded
operators that add, multiply, and assign whole vectors:

cl ass Fl oat Vect or

{ _
public :
Fl oat Vector () ; /| default constructor
Fl oat Vect or (/1 val ue constructor
I nt size, Il ..size of vector
fl oat val /1 ..initial elenent val ue
)
Fl oat Vect or (/1 copy constructor
const Fl oat Vectoré& v /1 ..what to copy
)
virtual ~Fl oat Vector(); /1 clean up
fl oat get At (/1 get an el ement
i nt index [l ..which elenment to get

file:///E|/r2/html/background.html (1 of 14) [11/1/1999 7:01:35 PM]

POOMA Tutorials: Background and Terminology

) const;

voi d set At (/'l change an el enent
i nt index, /1 ..which elenent to set
fl oat val /1 ..new val ue for el enent

)

Fl oat Vect or oper at or +(/1 add, creating a new vector
const Fl oat Vector& ri ght /1 ..thing being added

)

Fl oat Vect or operat or *(/1 multiply (create result)
const Fl oat Vector& ri ght /1 ..thing being multiplied

)

Fl oat Vect or & oper at or =(/| assign, returning target
const Fl oat Vector & ri ght /'l ..source

)

protected :
int len_; /1 current |ength
float* val _; /'l current val ues

b

Look closely at what happens when a seemingly-innocuous statement like the following is executed:

Fl oat Vector V, W X Y;

/1 initialization

V=W* X+Y,
W X createsanew Fl oat Vect or, and fills it with the elementwise product of Wand X by looping over the
raw block of f | oat sencapsulated by those two vectors. The call to the addition operator then creates another
temporary FlI oat Vect or , and executes another loop to fill it. The call to the assignment operator doesn't

create athird temporary, but does execute athird loop. The net result isthat our statement does the equivalent of
the following code:

Fl oat Vector V, W X, Y;
/[l initialization

Fl oat Vector tenp_1,;
for (int i=0; i<vector_size; ++i)

{
}

Fl oat Vector tenp_2;
for (int i=0; i<vector_size; ++i)

{
}

for (int i=0; i<vector_size; ++i)

tenp_1l.setAt(i, WgetAt(i) * X getAt(i));

tenp_2.setAt(i, tenp_l.getAt(i) + Y.getAt(i));

file:///E|/r2/html/background.html (2 of 14) [11/1/1999 7:01:35 PM]

POOMA Tutorials: Background and Terminology

{
}

Clearly, if this program was written in C instead of C++, the three loops would have been combined, and the
two temporary vectors eliminated, to create the more efficient code shown below:

V.setAt(i, tenp_2.getAt(i));

Fl oat Vector V, W X Y,
/1 initialization
for (int i=0; i<vector_size; ++i)

{
}

Turning the compact C++ expression first shown into the single optimized |oop shown above is beyond the
capabilities of existing commercial compilers. Because operations may involve aliasing---i.e., because an
expression like V=W X+V can assign to a vector while also reading from it---optimizers must err on the side of
caution, and neither eliminate temporaries nor fuse loops. This has led many programmersto believe that C++ is
intrinsically less efficient than C or Fortran 77, and that however good object-oriented languages are for
building user interfaces, they will never deliver the performance needed for modern scientific and engineering
applications.

V.setAt (i, WgetAt(i) * X getAt(i) + Y.getAt(i));

The good news is that this conclusion iswrong. By making full use of the features of the new ANSI/ISO C++
standard, the POOMA library can give a modern C++ compiler the information it needs to compile C++
programs that achieve Fortran 77 levels of performance. What's more, POOMA does not sacrifice either
readability or usability in order to achieve this. in fact, POOMA programs are more portable, and more readable,
than many of their peers.

In order to understand how and why POOMA does what it does, it is necessary to have at least some
understanding of the architecture of a modern RISC-based computer, how compilers optimize code, and what

C++ templates can and cannot do. The sections below discuss each of these topicsin turn.

Modern Architectures

One of the keys to making modern RISC processors go fast is extensive use of caching. A computer uses a
cache to exploit the spatial and temporal locality of most programs. The former term meansthat if a process
accesses address A, the odds are good that it will access addresses near A shortly thereafter. The latter means
that if a process accesses avalue, it islikely to access that value again shortly thereafter. An example of spatial
locality is access to the fields of record structures in high-level languages; an example of temporal locality isthe
repeated use of aloop index variable to subscript an array.

Since the extra hardware that makes a cache fast also makes it expensive, modern computer memory is
organized as a set of increasingly large, but increasingly slow, layers. For example, the memory hierarchy in a
500MHz DEC 21164 Alphatypically looks like this:

Register 2ns

L1 on-chipcache 4ns

L2 on-chip cache 15ns

L3 off-chip cache 30ns

Main memory 220ns

Caches are usually built as associative memories. In anormal computer memory, alocation is accessed by
specifying its physical address. In an associative memory, on the other hand, each location keeps track of its

file:///E|/r2/html/background.html (3 of 14) [11/1/1999 7:01:35 PM]

POOMA Tutorials: Background and Terminology

own current logical address. When the processor tries to read or write some address A, each cache location
checks to see whether it is supposed to respond.

In practice, some restrictions are imposed. The associativity is often restricted to sets of two, four or eight, so
that every cachelineisn't eligible to cache every possible memory reference. The values in a cache are then
usually grouped into lines containing from four to sixteen words each. Together, these bring the cost down---the
cost of each piece of address-matching hardware is amortized over severa cache |locations---but can also lead to
thrashing: if a program triesto access values at regularly-spaced intervals, it could find itself loading a cache
line from memory, using just one of the valuesin the line, and then immediately replacing that whole line with
another one. One of the key features of POOMA isthat it reads and writes memory during vector and matrix
operations in ways that are much less likely to lead to thrashing. While this makes the implementation of
POOMA more complicated, it greatly increases its performance.

At the same time as some computer architects were making processors simpler, others were making computers
themselves more complex by combining dozens or hundreds of processorsin a single machine. The ssimplest
way to do thisisto just attach afew extra processors to the computer's main bus. Such adesign allows alot of
pre-existing software to be recycled; in particular, since most operating Systems are written so that process
execution may be interleaved arbitrarily, they can often be re-targeted to multiprocessors with only minor
modifications. Similarly, if aloop performs an operation on each element of an array, and the operations are
independent of one another, then each of P processors can run 1/P of the loop iterations independently.

The weakness of shared-bus multiprocessorsis the finite bandwidth of the bus. As the number of processors
increases, the time each one spends waiting to use the bus also increases. To date, this has limited the practical
size of such machines to about two dozen processors.

Today's answer to this problem is to give each processor its own memory, and to use a network to connect those
processor/memory nodes together. One advantage of this approach is that each node can be built using
off-the-shelf hardware, such as a PC motherboard. Another advantage is that each processor's reads or writes of
its own memory will be very fast. Remote reads and writes may either be done automatically by system software
and hardware, or explicitly, using libraries such as PVM and MPI. So long as there is sufficient locality in
programs---i.e., so long as most references are local---this scheme can deliver very high performance.

Of course, distributed-memory machines have problems too. In particular, once memory has been divided up in
thisway, all pointers are not created equal. On a distributed memory machine with global addressing (such as an
SGI Origin 2000), dereferencing a pointer to remote memory will be considerably slower than local memory.
On a distributed memory machine without global addressing (like a cluster of Linux boxes), a pointer cannot
safely be passed between processes running on different processors. Similarly, if a data structure such as an
array has been decomposed, and its components spread across the available processors so that each may work on
asmall part of it, asmall change to an agorithm may have alarge effect on performance. Another of POOMA's
strengths is that it automatically manages data distribution to achieve high performance in a nonuniform shared
memory machine. This not only lets programmers concentrate on algorithmic issues, it also saves them from
having to learn the quirks of the architectures they want to run their programs on.

POOMA's Parallel Execution Model

In order to be able to cope with the variations in machine architecture noted above, POOMA's parallel execution
model is defined in terms of one or more contexts, each of which may host one or more threads. A context isa
distinct region of memory in some computer. The threads associated with the context can access data in that
memory region and can run on the processors associated with that context. Threads running in different contexts
cannot access memory in other contexts.

A single context may include several physical processors, or just one. Conversely, different contexts do not have
to be on separate computers---for example, a 32-node SMP machine could have up to 32 separate contexts. This
release of POOMA only supports a single context for each application, but can use multiple threads in the

file://[E|/r2/html/background.html (4 of 14) [11/1/1999 7:01:35 PM]

POOMA Tutorials: Background and Terminology

context on supported platforms. Support for multiple contexts will be added in an upcoming release.

Optimization

Along with interpreting the footnotes in various language standards, inventing automatic ways to optimize
programsis amajor preoccupation of today's compiler writers. Since a program is a specification of a function
mapping input values to outputs, it ought to be possible for a sufficiently clever compiler to find the sequence of
instructions that would calculate that function in the least time.

In practice, the phrase "sufficiently clever" glosses over some immense difficulties. If computer memories were
infinitely large, so that no location ever needed to be used more than once, the task would be easier. However,
programmers writing Fortran 77 and C++ invariably save values from one calculation to use in another (i.e.,
perform assignments), use pointers or index vectors to access data structures, or use severa different names to
access a single data structure (such as segments of an array). Before applying a possible optimization, therefore,
acompiler must be able to convince itself that the optimization will not have unpleasant side effects.

To make this more concrete, consider the following sequence of statements:

A=5* B+ C Il S
X=(Y+ 2 | 2 IS
D=(A+2) /| E Il S3
C=F, J); Il Sy
A=1 +J; /'l Sg
if (A<DO0 Il Sg
{
B = 0;
}

S, and S, are independent, since no variable appears in both. However, the result of S; depends on the result of
S;, since A appears on the right hand side of S;. Similarly, S, setsthe value of C, which S; uses, so S, must not
take place before S; has read the previous value of C. S5, which also setsthe value of A, dependson S, since §;
must not perform its assignment after S5'sif the result of the program are to be unchanged. Finally, S5 depends
on S because avalue set in S is used to control the behavior of S;.

Whileit is easy to trace the relationships in this short program by hand, it has been known since the mid-1960s
that the general problem of determining dependencies among statements in the presence of conditional branches
isundecidable. The good newsisthat if all we want are sufficient, rather than necessary, conditions---i.e. if
erring on the side of caution is acceptable---then the conditions which § and § must satisfy in order to be

independent are relatively simple.

This analysis becomes even simpler if we restrict our analysisto basic blocks. A basic block is a sequence of
statements which can only be executed in a particular order. Basic blocks have a single entry point, a single exit
point, and do not contain conditional branches or loop-backs. While they are usually short in systems programs
like compilers and operating systems, most scientific programs contain basic blocks which are hundreds of
instructions long. One of the aims of POOMA isto use C++ templates to make it easier for compilersto find
and optimize basic blocks. In particular, as templates are expanded during compilation of POOMA programs,
temporary variables that can confuse optimizers are automatically eliminated.

Another goal of POOMA's implementation isto make it easier for compilersto track data dependencies. In C++,
an array isreally just a pointer to the area of memory that has been allocated to store the array's values. This
makes it easy for arrays to overlap and alias one another, which is often useful in improving performance, but it

file:///E|/r2/html/background.html (5 of 14) [11/1/1999 7:01:35 PM]

POOMA Tutorials: Background and Terminology

also makesit very difficult for compilers to determine when two memory references are, or are not, independent.

For example, suppose we re-write the first three statements in the example above as follows (using the **
notation of C++ to indicate a pointer de-reference):

*A = *B + *C Il Ty
*X = (*Y + *2) | 2 Il T,
*D = (*A + 2) | *E Il T,

In the worst case, all eight pointers could point to the same location in memory, which would make this
calculation equivalent to:

J=2*(J+1) /| J;
(where J isthe valuein that one location). At the other extreme, each pointer could point at a separate location,
which would mean that the calculation would have a completely different result. Again, astemplates are
expanded during the compilation of POOMA programs, the compiler is automatically given the extra
information it needs to discriminate between cases like these, and thereby deliver better performance.

Templates

So what exactly is a C++ template? One way to look at them is as an improvement over macros. Suppose, for
example, that you wanted to create a set of classesto store pairsof i nt s, pairsof f | oat s,andsoon. InC, or
pre-standardization versions of C++, you might first define a macro:

#defi ne DECLARE_PAI R_CLASS(nane_, type_) \
cl ass nane_ \
{ \
public : \
name_(); /| default constructor \
name_(type_ left, type_ right); /'l val ue constructor \
nane_(const nane_& right); /'l copy constructor \
virtual ~nanme_(); /'l destructor \
type & left(); /| access |eft el enent \
type & right(); /1 access right el enment \
\
protected : \
type_ left_, right_; /'l val ue storage \

1

Y ou could then use that macro to create each class in turn:

DECLARE_PAI R _ CLASS(IntPair, int)
DECLARE_PAI R_CLASS(Fl oat Pair, fl oat)

A better way to do thisin standard C++ isto declare atemplate class, and then instantiate that class when and as
needed:

t enpl at e<cl ass Dat aType>
class Pair

{
public :

file:///E|/r2/html/background.html (6 of 14) [11/1/1999 7:01:35 PM]

POOMA Tutorials: Background and Terminology

Pair(); /| default constructor

Pai r (Dat aType |l eft, /1l val ue constructor
Dat aType right);

Pai r (const Pair<DataType>& right); // copy constructor

virtual ~Pair(); /1 destructor

Dat aType& left(); /| access |eft el enent

Dat aType& ri ght (); /'l access right el enent
protected :

Dat aType left _, right_; /'l val ue storage

s

Here, the keyword t enpl at e tells the compiler that the class cannot be compiled right away, since it depends
on an as-yet-unknown data type. When the declarations:

Pai r <i nt > pai rOInts;
Pai r<f | oat > pai r O Fl oat s;

are seen, the compiler finds the declaration of Pai r, and instantiates it once for each underlying data type.

Templates can also be used to define functions, asin:

t enpl at e<cl ass Dat aType>
voi d swap(DataType& | eft, DataType& right)
{
Dat aType tnp(left);
left = right;
right = tnp;
}

Once again, this function can be called with two objects of any matching type, without any further work on the
programmer's part:

int i, j;
swap(i, j);

Shape back, front;
swap(back, front);

Note that the implementation of swap() depends on the actual data type of its arguments having both a copy
constructor (so that t np can beinitialized with the value of | ef t) and an assignment operator (so that | ef t
andri ght can be overwritten). If the actual data type does not provide either of these, the particular
instantiation of swap() will fail to compile.

Note also that swap() can be made more flexible by not requiring the two objects to have exactly the same
type. The following re-definition of swap() will exchange the values of any two objects, provided appropriate
assignment and conversion operators exist:

tenpl at e<cl ass Left Type, class Ri ght Type>
void swap(Left Type& left, Ri ghtType& right)

{
Left Type tnp(left);

left = right;

file:///E|/r2/html/background.html (7 of 14) [11/1/1999 7:01:35 PM]

POOMA Tutorials: Background and Terminology

right = tnp;

}

Finally, theword cl ass appearsin template definitions because any valid type, such as integers, can be used.
The code below defines atemplate for a small fixed-size vector class, but does not fix either the size or the

underlying data type:

t enpl at e<cl ass Dat aType, int FixedSi ze>

cl ass Fi xedVect or
{
public :
Fi xedVect or () ; /1
Fi xedVect or (Dat aType filler); /1
virtual ~Fi xedVector(); Il

Fi xedVect or (/1
const Fi xedVect or <Dat aType,
)

Fi xedVect or <Dat aType>& 11
oper at or =(

const Fi xedVect or <Dat aType,
);

Dat aType& operator[] (i nt index);

protected :
Dat aType storage[Fi xedSi ze] ;
b

default constructor
val ue constructor
dest ruct or

copy constructor

Fi xedSi ze>& ri ght

assi gnnent

Fi xedSi ze>& ri ght

/] el ement access

/1l fixed-size storage

It isat this point that the possible performance advantages of templated classes start to become apparent.
Suppose that the copy constructor for this classisimplemented as follows:

t enpl at e<cl ass Dat aType, int FixedSi ze>
Fi xedVect or: : Fi xedVect or (

const Fi xedVect or <Dat aType,

) {
for (int i=0; i<FixedSize; ++i)
{
storage[i] = right.storage[i];
}
}

When the compiler sees a use of the copy constructor, such as.

t enpl at e<cl ass Dat aType, int FixedSi ze>
voi d soneFuncti on(Fi xedVect or <Dat aType,
{
Fi xedVect or <Dat aType,
/'l operations on tnp

}

Fi xedSi ze>& ri ght

Fi xedSi ze> arg)

Fi xedSi ze> tnp(arg);

it knows the size as well as the underlying data type of the objects being manipulated, and can therefore perform

file:///E|/r2/html/background.html (8 of 14) [11/1/1999 7:01:35 PM]

POOMA Tutorials: Background and Terminology

many more optimizations than it could if the size were variable. What's more, the compiler can do this even
when different callsto someFunct i on() operate on vectors of different sizes, asin:

Fi xedVect or <doubl e, 8> splineFilter;
someFunction(splineFilter);

Fi xedVect or <doubl e, 22> chebyshevFilter;
someFuncti on(chebyshevFilter);

Automatic instantiation of templates is both convenient and powerful, but does have one drawback. Suppose the
Pai r class shown earlier isinstantiated in each of two separate source filesto create apair of i nt s. The
compiler and linker could:

1. treat the two instantiations as completely separate objects,
2. detect and eliminate redundant instantiations; or
3. avoid redundancy by not instantiating templates until the program as a whole was being linked.

Thefirst of these can lead to very large programs, as a commonly-used template class may be expanded dozens
of times. The second is difficult to do, asit involves patching up compiled files as they are being linked. Most
recent versions of C++ compilers are therefore taking the third approach, but POOMA users should be aware
that older versions might still produce much larger executables than one would expect.

The last use of templates that isimportant to this discussion is member templates, which are alogical extension
of templated functions. This feature was added to the ANSI/ISO C++ standard rather late, but has proved to be
very powerful. Just as atemplated function is instantiated on demand for different types of arguments, so too are
templated methods instantiated for a class when and as they are used. For example, suppose a classis defined as
follows:

cl ass Exanpl e

{
public :
Exanpl e(); /| default constructor
virtual ~Exanple(); /| destructor
t enpl at e<cl ass T>
voi d foo(T object)
{
/| some operation on object
}
4

Whenever the method f 0o() iscalled with an object of a particular type, the compiler instantiates the method
for that type. Thus, both of the following callsin the following code are legal:

Exanpl e e;

Shape box;

e.foo(5); /1 instantiate for int

e. foo(box); /1l instantiate for Shape

file:///E|/r2/html/background.html (9 of 14) [11/1/1999 7:01:35 PM]

POOMA Tutorials: Background and Terminology

The Standard Template Library

The best-known use of templates to date has been the Standard Template Library, or STL. The STL uses
templates to separate containers (such as vectors and lists) from algorithms (such as finding, merging, and
sorting). The two are connected through the use of iterators, which are classes that know how to read or write
particular containers, without exposing the actual type of those containers.

For example, consider the following code fragment, which replaces the first occurrence of a particular valuein a
vector of floating-point numbers:

voi d repl aceFirst(vector<doubl e> & vals, double oldVval, double newval)

{
vector<doubl e>::iterator |oc =
find(val s. begin(), vals.end(), oldval);
if (loc !'=vals.end())
*| oc = newval ;
}

The STL classvect or declares another classcalledi t er at or , whosejob it isto traverseavect or . The
two methods begi n() andend() returninstancesof vect or: : i t er at or marking the beginning and end
of the vector. STL'sf i nd() function iterates from the first of its arguments to the second, looking for avalue
that matches the third argument. Finally, dereferencing (oper at or *) is overloaded for
vector::iterator,sothat *| oc returnsthe value at the location specified by | oc.

If we decide later to store our valuesin alist instead of in avector, only the declaration of the container type
needs to change, sincel i st defines a nested iterator class, and begi n() and end() methods, in exactly the
sameway asvect or :

voi d repl aceFirst(list<double> & vals, double oldVal, double newal)

{
| i st<doubl e>::iterator loc =
find(val s. begin(), vals.end(), oldval);
if (loc !'=vals.end())
*l oc = newval ;
}
If we go one step further, and use at ypedef tolabel our container type, then nothing inf i ndVal ue()
needs to change at all:

t ypedef vector<doubl e> Storage;
/'l typedef |ist<double> Storage;

voi d repl aceFi rst (St orage<doubl e> & vals, double ol dval, double newval)

{
St or age<doubl e>: :iterator loc =
find(val s. begin(), vals.end(), oldval);
if (loc !'=vals.end())
*l oc = newval ;
}

The performance of this code will change as the storage mechanism changes, but that's the point: STL-based
code can often be tuned using only minor, non-algorithmic changes. As the tutorials will show, POOMA
borrows many ideas from the STL in order to separate interface from implementation, and thereby make

file:///E|/r2/html/background.html (10 of 14) [11/1/1999 7:01:35 PM]

POOMA Tutorials: Background and Terminology

optimization easier. In particular, POOMA's arrays are actually more like iterators, in that they are an interface
to data, rather than the dataitself. This allows programmers to switch between dense and sparse, or centralized
and distributed, array storage, with only minor, localized changes to the text of their programs.

Expression Templates

Parse trees are commonly used by compilers to store the essential features of the source of a program. The leaf

nodes of a parse tree consist of atomic symbolsin the language, such as variable names or numerical constants.
The parse tree's intermediate nodes represent ways of combining those values, such as arithmetic operators and
whi | e loops. For example, the expression - B+2* C could be represented by the parse tree:

Parse trees are often represented textually using prefix notation, in which the non-terminal combiner and its
arguments are strung together in a parenthesized list. For example, the expression - B+2* C can be represented
a(+ (-B(* 2 Q).

What makes all of this relevant to high-performance computing is that the expresson (+ (-B) (* 2 Q)
could equally easily be written

Bi nar yOp<Add, UnaryOQp<M nus, B>, BinaryQp<Multiply, Scal ar<2>, C>:it'sjusta
different notation. However, this notation is very similar to the syntax of C++ templates --- so similar, in fact,
that it can actually be implemented given a careful enough set of template definitions. As discussed earlier, by

providing more information to the optimizer as programs are being compiled, template libraries can increase the
scope for performance optimization.
Any facility for representing expressions as trees must provide:
« arepresentation for leaf nodes (operands);
« away to represent operations to be performed at the leaves (i.e. functions on individual operands);
« arepresentation for non-leaf nodes (operators);
« away to represent operations to be performed at non-leaf nodes (i.e. combiners);
« away to passinformation (such as the function to be performed at the leaves) downward in the tree; and
« away to collect and combine information moving up the tree.
C++ templates were not designed with these requirements in mind, but it turns out that they can satisfy them.
The central ideaisto use the compiler's representation of type information in an instantiated template to store

operands and operators. For example, suppose that a set of classes have been defined to represent the basic
arithmetic operations.

struct AddOp

{
static inline double apply(const double & left, const double & vy)
{
return x +vy;
}
3
struct Ml Op
{

file:///E|/r2/html/background.html (11 of 14) [11/1/1999 7:01:35 PM]

POOMA Tutorials: Background and Terminology

static inline double apply(const double & left, const double & vy)

{
}

return x * vy,

}s
[/ ...and so on...

Note the use of the keyword st r uct ; thissimply signals that everything else in these classes---in particular,
their default constructors and their destructors---are publ i c.

Now suppose that atemplated class Bi nar y Op has been defined as follows:

t enpl at e<cl ass Qperator, class RHS>
class BinaryQp

{
public :
/'l enpty constructor will be optimzed away, but triggers
/'l type identification needed for tenplate expansion
Bi nar yOp(
Oper at or op,
const Vector & leftArg,
const RHS & rightArg
) : left _(leftArg),
right _(rightArg)
{}
/'l enpty destructor will be optim zed away
~Bi naryQp()
{}
/'l cal cul ate val ue of expression at specified index by recursing
i nline double apply(int i)
{
return Operator::apply(leftArg.apply(i), rightArg.apply(i));
}
protected :
const Vector & left_;
const RHS & right_;
}s

If b and ¢ have been defined as Vect or , and if Vect or : : appl y() returnsthe vector element at the
specified index, then when the compiler sees the following expression:

Bi nar yOp<Mul Op, Vector, Vector>(Mil Op(), b, c).apply(3)

it trandlates the expression into b. appl y(3) * c. appl y(3) . Thecreation of the intermediate instance of
Bi nar yOp isoptimized away completely, since all that object doesis record a couple of references to
arguments.

Why to go all thistrouble? The answer is rather long, and requires a few seemingly-pointless steps. Consider
what happens when the complicated expression above is nested inside an even more complicated expression,
which adds an element of another vector a to the original expression's result:

file:///E|/r2/html/background.html (12 of 14) [11/1/1999 7:01:35 PM]

POOMA Tutorials: Background and Terminology

Bi nar yOQp< AddOp,
Vect or,
Bi naryOp< Mul Op, Vector, Vector >
>(a, BinaryOp< Mul Op, Vector, Vector >(b, c)).apply(3);

Thisexpression calculatesa. appl y(3) + (b.apply(3) *c.apply(3)).Iftheexpressonwas
wrapped in af or loop, and the loop's index was used in place of the constant 3, the expression would calculate
an entire vector's worth of new values:

Bi nar yOp< AddOp,
Vect or,
Bi naryOp< Mul Op, Vector, Vector > >
expr(a, BinaryOp< Miul Op, Vector, Vector >(b, c));
for (int i=0; i<vectorlLength; ++i)

doubl e tnp = expr.apply(i);
}

The possible nesting of Bi nar yQp inside itself is the reason that the Bi nar yOp template has two type
parameters. The first argument to aBi nar yQp isalwaysaVect or, but the second may be either aVect or
or an expression involving Vect or s.

The code above is not something any reasonable person would want to write. However, having a compiler create
thisloop and its contained expression automatically is entirely plausible. The first step isto overload addition
and multiplication for vectors, so that oper at or +(Vect or, Vect or) (and

oper at or *(Vect or, Vect or)) instantiates Bi nar yQp with AddQp (and Mul Op) asitsfirst type
argument, and invokesthe appl y() method of the instantiated object. The second step is to overload the
assignment operator oper at or =(Vect or, Vect or) so that it generates the loop shown above:

tenpl at e<cl ass Op, T>
Vect or & operat or =(
Vector & target,

Bi nar yQp<Qp> & expr

) {
for (int i=0; i<vectorlLength; ++i)
{
target.set (i, expr.apply(i));
}
return target;
}

With these operator definitionsin play, the smple expression:

Vector x, a, b, c;
[l ...initialization...
X =a+b* c;

isautomatically translated into the efficient loop shown above, rather than into the inefficient loops shown
earlier. The expression on the right hand side is turned into an instance of atemplated class whose type encodes
the operations to be performed, while the implementation of the assignment operator causes that expression to
be evaluated exactly once for each legal index. No temporaries are created, and only a single loop is executed.

file:///E|/r2/html/background.html (13 of 14) [11/1/1999 7:01:35 PM]

POOMA Tutorials: Background and Terminology

This may seem complicated, but that's because it is. POOMA, and other libraries based on expression templates,
push C++ to its limits because that's what it takes to get high performance. Defining the templated classes such a
library requiresis a painstaking task, asis ensuring that their expansion produces the correct result, but once it
has been done, programmers can take full advantage of operator overloading to create compact, readable,

maintai nable programs without sacrificing performance.

[Prev] [Home] [Next]

Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/background.html (14 of 14) [11/1/1999 7:01:35 PM]

http://www.acl.lanl.gov/pooma/

POOMA Tutorial 1: A Laplace Solver Using Simple Jacobi Iteration

Parallel"Object-Oriented
Methods . and Applications

POOMA Tutorial 1
A Laplace Solver Using Simple Jacobi Iteration

Contents:
Introduction
Laplace's Equation
A Sequential Solution
Using Intervals
Some Refinements
A Note on Affinity

Summary

Introduction

This tutorial introduces two of the most commonly used classesin POOMA: Ar r ay, which is used to store data, and
I nt er val , which isused to specify a subsection of an array. The key ideas introduced in thistutorial are:

« the use of whole-array operations, such as scalar-to-array assignment and elementwise addition; and
« theuse of intervals to specify array sections.

Laplace's Equation

Our first POOMA program solves Laplace's equation on aregular grid using simple Jacobi iteration. Laplace's equation in
two dimensionsis:

d2V/dx2 + d2Vidy2 = 0

where V is, for example, the electric potential in aflat metal sheet. If we approximate the second derivativesin X and Y
using a difference equation, we obtain:

VG, 1) = (V(i+1,)) + (0, j+1) + V(i-1,j) + V(i,j-1)) 1 4

i.e. the voltage at any point isthe average of the voltages at neighboring points. This formulation also gives us away to
solve this equation numerically: given any initial guess for the voltage V(;, we can calculate a new guess V; by using Vg on

the right hand side of the equation above. We can then use the calculated V to calculate a new guess V,, and so on.

This process, called Jacobi iteration, isthe simplest in afamily of relaxation methods than can be used to solve awide range
of problems. All relaxation methods iterate toward convergence, and use some kind of nearest-neighbor updating scheme, or
stencil. The stencil for Jacobi iteration, for example, consists of five points arranged in a cross; other, larger stencilslead to
different update rules, and different convergence rates. One of the main goals of POOMA was to make it easy for
programmers to specify and implement stencil-based algorithms of this kind.

If we add charged particles to the system, we obtain Poisson's equation:
d2v/dx2 + d2v/dy2 = 3

where I3 specifies the charge distribution. The solution to this equation can also be calculated using a relaxation method such
as Jacobi iteration; the update equation is:

file:///E|/r2/html/tut-01.html (1 of 8) [11/1/1999 7:01:39 PM]

POOMA Tutorial 1: A Laplace Solver Using Simple Jacobi Iteration

V(@i Dnew = (V(+1,j) + V@, j+1) + V(i-1,)) + V(, J-1) - 11, j))/4

A Sequential Solution

Our first version of Jacobi iteration models aflat plate with aunit charge in its center using a 20x20 array. It uses POOMA's
arrays conventionally, by looping over their elements, and isincluded in the release as

exanpl es/ Sol ver s/ Sequent i al . Thereis nothing wrong with using the library this way---POOMA's arrays are till
very fast, and memory-efficient---but when compared with the refined program shown later, this code islonger and harder

to read.

#i ncl ude "Poora/ Arrays. h"
#i ncl ude <i ostreanp

/! The size of each side of the donain.
const int N = 20;

i nt
mai n(
i nt argc, /] argunent count
char* argv[] [l argunent |ist
) {
/1 Initialize POOVA.
Pooma: :initialize(argc, argv);
[l The array we'll be solving for
Array<2> V(N, N);
/1 The right hand side of the equation (spike in the center)
Array<2> b(N, N);
[l Initialize.
for (int i=0; i<N ++i){
for (int j=0; j<N, ++j){
V(i, j) = 0.0;
b(i, j) = 0.0;
}
}
b(N2, N2) =-1.0;
/'l lterate 200 tines.
Array<2> tenp(N, N);
for (int iteration=0; iteration<200; ++iteration)
{
/[l Use interior of Vto fill tenp
for (int i=1; i<N1; ++i){
for (int j=1; j<N-1; ++j){
temp(i, j) = 0.25*(V(i+1,j) + V(i-1,j) + V(i,j+1) + V(i,j-1) -
b(i,j));

}

}

/1l Use temp to fill V

for (int i=1; i<N1; ++i){
for (int j=1; j<N-1; ++j){
} V(i, j) = temp(i, j);

file:///E|/r2/html/tut-01.html (2 of 8) [11/1/1999 7:01:39 PM]

POOMA Tutorial 1: A Laplace Solver Using Simple Jacobi Iteration

}

}

[/ Print out the result
for (int j=0; j<N ++4j){

}

for (int i=0; i<N ++i){
std::cout << V(i, j) << " ";
}

std::cout << std::endl;

/1l Cean up POOMA and report successful execution.
Pooma: : finalize();
return O;

Using Intervals

The program shown above is not much of an advance over its C equivaent. The programmer is still required to loop over
data elements explicitly, even though these loops al take the same form. A better implementation of Jacobi iteration is
shown below (and included in the release asexanpl es/ Sol ver s/ Si npl eJacobi). Thisversion uses| nt er val
objects to specify index ranges, which eliminates the need for the explicit loops of the first version.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

#i ncl ude "Pooma/ Arrays. h"

#i ncl ude <i ostreanp

// The size of each side of the domain.
const int N = 20;

i nt
mai n(
i nt argc, /1 argunent count
char* argv|] /1 argunent |ist
) {

/1 Initialize POOVA.
Pooma: :initialize(argc, argv);

/[l The array we'll be solving for
Array<2> V(N, N);
V = 0.0;

/1 The right hand side of the equation (spike in the center)
Array<2> b(N, N);

b = 0.0;

b(NN2, N2) =-1.0;

/1 Specify the interior of the domain
Interval <1> 1(1, N2), J(1, N2);

/'l lterate 200 tines
for (int iteration=0; iteration<200; ++iteration)

{
}

[/ Print out the result

V(1,3) = 0.25%(V(1+1,3) + V(1-1,3) + V(1,J3+1) + V(I,J-1)

file:///E|/r2/html/tut-01.html (3 of 8) [11/1/1999 7:01:39 PM]

b(l,J));

POOMA Tutorial 1: A Laplace Solver Using Simple Jacobi Iteration

35 std::cout << V << std::endl;

36

37 /1 Clean up POOVA and report success.
38 Pooma: : finalize();

39 return O;

40 }

Thefirst three lines of this program include the header file needed to write POOMA programs, and the standard C++ 1/0
streams header file. Poona/ Ar r ays. h includes the header files that define POOMA's arrays. These arrays do not
themselves contain data, but instead are handles on data containers through which programs can read, write, and apply
operations to N-dimensional sets of elements. Aswe shall seg, it is possible for many arrays to refer to the same underlying
datain different ways.

Poona/ Ar rays. h alsoincludes al the declarations of the basic POOMA library interface functions. These genera
routines are used to initialize, query, and shut down the POOMA library environment, including the underlying run-time
system.

The next statement in this program, at line 6, defines the size of our problem domain. In order to keep this code simple, this
Size is made a constant, and the array is made square. Real applications will usually employ variable-sized domains, and put
off decisions about the actual sizes of arrays until run-time.

The function Pooma: ;i nitialize(),whichiscaledat line 14, initializes some of POOMA'sinternal data structures.
This function looks for certain POOMA-specific arguments in the program's command-line argument list, strips them out,
and returns a possibly-shortened list. Programs should call Poona: :initial i ze() before calling any functions or
methods from the POOMA library that might do operationsin paralel. (They can adternatively use Pooma: : Opt i ons, as
described in another tutorial.) In practice, this meansthat it is generally a bad idea to declare POOMA objects as global

variables, even if the program is not paralel when it isfirst written, since their presence can impede future portability.

Line 17 actually declares an array. The first thing to notice is that the rank of the array (i.e., the number of dimensionsit has)
isatemplate parameter to the class Ar r ay, while the initial dimensions of the array are given as constructor parameters. If
we wanted to create a 3-dimensional array, we could change this line to be something like:

Array<3> V(Si zeX, SizeY, SizeZ);

When the array V is created, POOMA realizes that some storage hasto be created for it aswell, and so it creates an actual
data area at this point. When the assignment statement on the next line (line 18) is executed, POOMA sees an array target,
but ascalar value, so it fills the whole array with the scalar's value.

Lines 21-23 create and initialize the array that stores the charge distribution term 3. This array's values are fixed: thereisa
single negative unit charge in the center of the domain, and no other charges anywhere else. Note how line 22 uses
scalar-to-array assignment, while line 23 assigns to a single element of the array b using conventional subscripting.
POOMA's arrays have many advanced features, but they also support mundane operations, such as reading or writing a
particular location.

Line 26 introducesthe | nt er val class. Anl nt er val specifies a contiguous range of index values; the integer template
argument to | nt er val specifiesthe interval's rank, while the constructor arguments specify the low and high ends of the
interval's value. Thus, since Nisfixed at 20 in this program, both | and J specify the one-dimensional interval from 1 to 19
inclusive.

Intervals are used to select sections of arrays using a Fortran 90-like syntax. Intervals and integers may be freely mixed
when indexing an array; if any index in an expression is an interval, the result is atemporary alias for the specified array
section. Thisaiasisitself an array, since arrays are just lightweight handles on underlying data storage objects. The
expression V(| , J) therefore returns atemporary array which aliases the interior of the same storage used by the array V.

Note that since the array V is square, the program could have declared asingle | nt er val spanning 1..N-2, and used it to
index V aong both axes. However, the code is easier to read, and easier to modify to handle non-square domains, if two
separate | nt er val sare used.

The loop spanning lines 29-32 performs the Jacobi relaxation. As discussed earlier, this consists of repeatedly averaging the
charge distribution b at each location, and the valuesin V that are adjacent to that location, and then updating the location
with that average. These calculations are done in parallel; that is, they appear to be calculated simultaneously for all

file:///E|/r2/html/tut-01.html (4 of 8) [11/1/1999 7:01:39 PM]

POOMA Tutorial 1: A Laplace Solver Using Simple Jacobi Iteration

elementsin the array. Thisis accomplished by using the | nt er val sdeclared on line 26 to select sections of V with
appropriate offsets, and then relying on overloaded addition and subtraction operators to combine these sections. For
example, the expression V(| , J+1) selectsthose elements V(i , j) of Vfor whichi isintherange1..N-2,andj isinthe
range 2..N-1 (i.e., the domain is offset in the second dimension by one). As can be inferred, arithmeticon | nt er val s
works in the obvious way: for example, adding an integer adjusts all the elements of the | nt er val upward or downward.

Note that the assignment on line 31 automatically creates atemporary copy of the array V, so that values are not read while
they are being overwritten. POOMA automatically detects cases in which the stencils on the reading side of an assignment
overlap the stencils on the assignment's writing side, and creates temporaries as needed to avoid conflicts. The program
shown in the next tutorial avoids the creation of temporaries simply by using non-overlapping stencils.

The statement on line 35 prints out the whole of the array V. POOMA overloads the usual stream operators (<< and >>) to
handle most of the abjectsin the library sensibly. In this case, the output expression prints the elements of V arow at atime,
putting each row on a separate line. Finally, line 38 calls the cleanup routine Poona: : fi nal i ze() , which complements
the earlier call to Poona: i niti alize() online 14, and returns O to indicate successful completion.

Some Refinements

One thing that isn't shown in the program above is the precision of the calculations. To find out what thisis, we can inspect
the declaration of the class Ar r ay in the POOMA header file Array. h:

tenplate < int Dim

class T

cl ass Engi neTag
class Array :

{
b

Theclass Ar r ay has three template parameters. the number of dimensions, the element data type, and an engine tag that
specifies how the underlying data is actually stored. We will discuss engines and engine tags in more detail in subsequent
tutorials.

POOVA_DEFAULT_ELEMENT_TYPE,
PCOVA_DEFAULT_ENG NE_TYPE >

What makes this templated class declaration different from others we have seen so far is that default values are supplied for
two of its three type parameters. The macros POOVA DEFAULT_ELEMENT _TYPE and

POOVA _DEFAULT_ENG NE _TYPE are defined in the header file PoomaConf i gur at i on. h. Thefirst specifiesthe
default element type of arrays, while the second specifies their default storage mechanism. The default for thefirst is
doubl e, while the default for the second specifies dense, rectangular storage.

There are therefore two ways to change the precision of the calculations in the program above. One isto re-define
POOVA DEFAULT_ARRAY_ELEMENT _T:

#undef POOMA DEFAULT ELEMENT_ TYPE
#defi ne POOVA DEFAULT _ELEMENT TYPE fl oat
#i ncl ude "Pooma/ Arrays. h"

The "undefinition" is needed because some compilers automatically read a " prefix file" before any other headers. This
#def i ne must come before any of POOMA's header files are included to ensure that al instantiations of all POOMA
classes are done with the same default in effect.

The second, and more modular, way to change the precision of this Laplace solver isto specify the datatypes of the arrays
explicitly:

Array<2, float> V(N, N);

Array<2, float> b(N, N);

Thisisgenerally considered better practice, asit is clear at the point of declaration what the data type of each array is, and
because it makes it easier for programmers to combine classes that have been written independently. Other aspects of
POOMA can and should be changed in the same way. (For example, the default engine type could be re-defined to make

file:///E|/r2/html/tut-01.html (5 of 8) [11/1/1999 7:01:39 PM]

POOMA Tutorial 1: A Laplace Solver Using Simple Jacobi Iteration

parallel evaluation the default.)

It isalso generally considered good practiceto uset ypedef sto ensure the consistency of array definitions. For example,
the Laplace solver could be written as follows:

t ypedef doubl e Lapl aceDat aType_t;

typedef Array<2, Lapl aceDataType t> Lapl aceArrayType t;
Lapl aceArrayType_t V(N, N);

Lapl aceArrayType_t b(N, N);

Declaring types explicitly in this way might seem unnecessarily fussy in asmall program such asthis. However, all
programs have atendency to grow, and finding and modifying dozens of object declarations after the fact is much more
tedious and error-prone than defining a type once, in one place, and then using it consistently through the rest of the
program.

One final note on this program: it might seem cumbersome to declare the array on line 17, then initialize it with an
assignment on the next line, instead of providing aninitial value for the array's elements with an extra constructor argument.
POOMA requiresthisin order to avoid ambiguity regarding what is adimension, and what is an initial value. Since asingle
templated class Ar r ay isused for arrays of any dimension up to seven, it must provide constructors taking up to seven
arguments which between them specify the array's dimensions. If we let Sub1, Sub2, and so on represent classes that can
legally be used to specify dimensions (such asi nt or | nt er val), then Ar r ay must have constructors like the ones
shown below:

tenplate < int Dm

class T

cl ass Engi neTag
class Array :

POOVA DEFAULT_ELEMENT_TYPE,
POOMA_DEFAULT_ENG NE_TYPE >

{ |
public :
t enpl at e<cl ass Sub1>
Array(const Subl& sl);
t enpl at e<cl ass Subl, class Sub2>
Array(const Subl& sl1, const Sub2& s2);
t enpl at e<cl ass Subl, class Sub2, class Sub3>
Array(const Subl& sl1, const Sub2& s2, const Sub3& s3);
etc.
1

Suppose that Ar r ay also included constructors that took an initial value for the array's elements as an argument:

tenplate <int Dm

class T

cl ass Engi neTag
class Array :

PCOVA_DEFAULT_ELEMENT_TYPE,
PCOVA_DEFAULT_ENG NE_TYPE >

{
public :
t enpl at e<cl ass Sub1>
Array(const Subl& sl1, T initial_value);
t enpl at e<cl ass Subl, class Sub2>
Array(const Subl& sl1, const Sub2& s2, T initial_value);
etc.
b

file:///E|/r2/html/tut-01.html (6 of 8) [11/1/1999 7:01:39 PM]

POOMA Tutorial 1: A Laplace Solver Using Simple Jacobi Iteration

Declarations such as the following would then be ambiguous:

Array<2, int> w8, 5);

since the compiler would not be able to tell whether the two arguments were to be interpreted as dimensions, or as a
dimension and aninitializer. If C++ provided away to "hide" constructors based on the value of atemplate argument, so
that only the constructors for N-dimensional arrays could be called for Ar r ay<N>, this problem wouldn't arise. Since there
is no such mechanism, POOMA requires programmers to specify initial values by wrapping them in atemplated class. This
is done as shown in the following declaration:

Array<2> w(5, 7, nodel El enent (3.14));

The function nodel El enent () does nothing except return an instance of Model El erent <T>, where T isthe type of
nmodel El ermrent () 'sargument. The Model El errent classin itsturn only exists to provide enough type information for
the compiler to distinguish between initializers and dimensions; the corresponding constructors of Ar r ay are:

tenplate < int Dim

class T
cl ass Engi neTag

POOVA_DEFAULT_ARRAY ELEMENT T,
POOVA DEFAULT_ARRAY_ENG NE >

class Array :

{

H

public :
/'l constructors for 1-dinensional arrays
t enpl at e<cl ass Subl1>
Array(const Subl& sl);
t enpl at e<cl ass Sub1>
Array(const Subl& sl1, Model El enent<T> initial_val ue);
/1l constructors for 2-dinensional arrays
t enmpl at e<cl ass Subl, class Sub2>
Array(const Subl& sl1, const Sub2& s2);
t enpl at e<cl ass Subl, class Sub2>
Array(const Subl& sl1, const Sub2& s2, Moddel El emrent<T> initial _value);
etc.

Note that the function nodel El enent () isjust a programming convenience: its only real purpose isto save programmers
the trouble of typing:

Array<2> w(5, 7, Model El enent <doubl e>(3. 14));

A Note on Affinity

In some shared-memory machines, such as SGI Origins, every processor can access memory everywhere in the machine, but
thereis till a difference between "local" and "remote” memory. The memory chips are physically located with particular
processors, so when processor 0 accesses memory that is actually stored with processor 127, the accessis on average about
3-4 times slower than if processor 0 accesses its own memory. This only arises on very large machines---computers with up
to 8 processors generally have truly symmetric memory.

When a program dynamically allocates memory on such a machine, the pages get mapped into the memory that islocated
with the CPU that first touches the memory. That is not necessarily the CPU that requested the all ocation, since many pages
could be allocated in one logical operation and pointers to them could be handed to other CPUs before being dereferenced.

Thus, both memory and threads can have an affinity for particular processors. A chunk of memory has affinity for a

file:///E|/r2/html/tut-01.html (7 of 8) [11/1/1999 7:01:39 PM]

POOMA Tutorial 1: A Laplace Solver Using Simple Jacobi Iteration

particular CPU, and the thread scheduler can give athread affinity for a CPU.

The difficulty that arisesisthat if the thread that is running the user's code initializes the memory for an Ar r ay with the
nmodel El enent () function mentioned in thefirst tutorial, all of the memory gets mapped to the CPU where that thread is

running, instead of to a CPU across the machine.

One solution to this problem would be for the constructor that takesaModel El enent to generate the iterates that fill the
memory, and then farm them out to the proper threads, so that the memory is mapped where the program actually wantsiit.
This optimization is not in this release of POOMA, but will be considered for future releases.

Summary

Thistutorial has shown that POOMA's Ar r ay class can be indexed sequentialy, like anormal C or C++ array. It can also
be indexed using Interval objects, each of which specifies a contiguous range of indices. When an Ar r ay isindexed using
anl nt erval , theresult itself actslike an array. Overloaded operators can be used to perform arithmetic and assignment
on both arrays and selected array sections. Finally, the elementary data type of arrays can be changed globally by redefining
amacro, or for individual arrays by overriding the default value of the Ar r ay template's second type parameter. The latter
is considered better programming practice, particularly whent ypedef isused to localize the type definition.

[Prev] [Home] [Next]
Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/tut-01.html (8 of 8) [11/1/1999 7:01:39 PM]

http://www.acl.lanl.gov/pooma/

POOMA Tutorial 2: Red/Black Update

Parallel"Object-Oriented
Methods and Applications

POOMA Tutorial 2
Red/Black Update

Contents.
Introduction
Red-Black Update
Ranges
Engines
Passing Arraysto Functions
Cdlling the Function
A Note on Expressions
Using Two-Dimensional Ranges
Periodic Boundary Conditions
Operations and Their Results

Summary

Introduction

Thistutoria shows how Range objects can be used to specify more general multi-valued array indices. It aso introduces
the Const Arr ay class, and delves a bit more deeply into the similarities between POOMA's arrays and the Standard
Template Library'siterators.

Red-Black Update

Jacobi iteration is a good general-purpose rel axation method, but there are several ways to speed up its convergence rate.
One of these, called red-black updating, can aso reduce the amount of memory that a program requires. Imagine that the
array's elements are alternately colored red and black, like the sguares on a checkerboard. In even-numbered iterations,
the red squares are updated using the values of their black neighbors; on odd-numbered iterations, the black squares are
updated using the red squares values. These updates can clearly be done in place, without any need for temporaries, and
yield faster convergence for an equivalent number of cal culations than simple Jacobi iteration.

A complete program that implements thisis shown below (and isincluded in the release as

exanpl es/ Sol ver s/ RBJacobi). Its key elements are the declaration and initialization of two Range objects on
line 37, the definition of the function that applies Jacobi relaxation on a specified domain on lines 9-17, and the four calls
to that function on lines 43-47. The sections following the program source discuss each of these pointsin turn.

01 #include "Poona/Arrays. h"

02

03 #include <iostreanp

04

05 // The size of each side of the domain.

06 const int N = 20;

07

08 // Apply a Jacobi iteration on the given donain.

file:///E|/r2/html/tut-02.html (1 of 11) [11/1/1999 7:01:45 PM]

POOMA Tutorial 2: Red/Black Update

09 wvoid
10 Appl yJacobi (
11 const Array<2> &V, /1 to be rel axed
12 const ConstArray<2> & b, /1 fixed term
13 const Range<1> & 1, /1 range on first axis
14 const Range<l> & J /1l range on second axis
15) {
16 V(I,J) =0.25 * (V(1+1,J) + V(1-1,3) + V(I,J+1) + V(I,J-1) - b(Il,3));
17 '}
18
19 int
20 mai n(
21 i nt ar gc, /1 argunment count
22 char* argv]] /1 argunent |ist
23){
24 [l Initialize POOVA.
25 Pooma: :initialize(argc, argv);
26
27 /1l The array we'll be solving for.
28 Array<2> V(N, N)
29 V = 0.0;
30
31 /1 The right hand side of the equation.
32 Array<2> b(N, N
33 b = 0.0;
34 b(N2, N2) = -1.0;
35
36 /1 The interior domain, now wth stride 2.
37 Range<1> I (1, N3, 2), J(1, N3, 2);
38
39 /[l lterate 100 ti mes.
40 for (int iteration=0; iteration<l100; ++iteration)
41 {
42 Il red
43 Appl yJacobi (V, b, I, J);
44 Appl yJacobi (V, b, 1+1, J+1);
45 /'l bl ack
46 Appl yJacobi (V, b, I+1, J);
47 Appl yJacobi (V, b, I, J+1);
48 }
49
50 /!l Print out the result.
51 std::cout << V << std::endl;
52
53 /1l Clean up and report success.
54 Pooma: : finalize();
55 return O;
56 }
Ranges

Our first requirement isasimple, efficient way to specify non-adjacent array elements. POOMA borrows the terminology
of Fortran 90 and other data-parallel languages, referring to the spacing between a sequence of index values as the
sequence's stride. For example, the sequence of indices{1,3,5,7} hasastride of 2, while the sequence { 8,13,18,23,28}
has a stride of 5, and the sequence {10,7,4,1} has a stride of -3.

file:///E|/r2/html/tut-02.html (2 of 11) [11/1/1999 7:01:45 PM]

POOMA Tutorial 2: Red/Black Update

POOMA programs represent index sequences with non-unit strides using Range objects. The templated class Range is
ageneraization of thel nt er val class seen in the previous tutorial (although for implementation reasons | nt er val is
not derived from Range). When a Range is declared, the program must specify its rank (i.e., the number of dimensions
it spans). The object's constructor parameters then specify the initial value of the sequence it represents, the upper bound
on the sequence's value (or lower bound, if the stride is negative), and the actual stride. For example, the three sequences
in the previous paragraph would be declared as:

Range<1> first (1, 7, 2);
Range<1> second(8, 30, 5);
Range<1> third (10, 0, -3);

Note that the range's bound does not have to be a value in the sequence: an upward range stops at the greatest sequence
element less than or equal to the bound, while a downward range stops at the smallest sequence element greater than or
equal to the bound. This conforms to the meaning of the Fortran 90 triplet notation.

It may seem redundant to define a separate classfor | nt er val , sinceit isjust aRange with astride of 1. However, the
useof anl nt er val isasignal that certain optimizations are possible during compilation that take advantage of

I nt er val 'sunit stride. These optimizations cannot efficiently be deferred until the program is executing, since that
would, in effect, require a conditional inside an inner loop. Another reason for making | nt er val and Range different
classesisthat | nt er val scan be used when declaring Ar r ay dimensions, but Ranges cannot, since Ar r ay s must
always have unit stride.

Engines

The previous tutorial said that the use of a non-scalar index as an array subscript selected a section from that array. The
way thisisimplemented istied into POOMA's notion of an engine. Arrays are just handles on engines, which are entities
that give the appearance of managing actual data. Engines come in two types. storage engines, which actually contain
data, and proxy engines, which can alias storage engines data areas, calculate data values on demand, or do just about
anything elsein order to give the appearance there's an actual data areain there somewhere.

When an Ar r ay is declared, a storage engineis created to store that array's elements. When that array is subscripted
withan| nt er val or aRange, thetemporary Ar r ay that is created is bound to a view engine, which aliases the
memory of the storage engine. Similarly, when an Ar r ay or Const Arr ay is passed by value to afunction, the
parameter is given aview engine, so that the values in the argument are aliased, rather than being copied. This happensin
the callsto Appl yJacobi (), whichisdiscussed below.

POOMA's engine-based architecture allows it to implement a number of useful tools efficiently. One of the simplest of
theseisthe Const ant Funct i on engine, which provides away to make a scalar behave like an array. For example, the
following statements:

Const Array<1, doubl e, ConstantFunction> c(10);
c. engi ne().set Const ant (3. 14) ;

produce a full-featured read-only array that returns 3.14 for al elements. Thisis more efficient and uses less storage than
making aBr i ck array with constant values. Engines that select components from arrays of structured types, or present
arrays whose values are calculated on the fly as simple functions of their indices, are discussed in Tutorial 4 and

Tutorial 6.

Passing Arrays to Functions

Lines 9-17 of this program define a function that applies Jacobi relaxation to a specified subset of the elements of an
array. The actual calculation appearsidentical to that seen in the previous tutorial. However, the function's parameter
declarations specify that | and J are Range objects, instead of | nt er val s. This means that the set of elements being
read or written is guaranteed to be regularly spaced, although the actual spacing is not known until the program isrun.

Another new feature in this function declaration is the use of the class Const Ar r ay. Declaring something to be of type

file:///E|/r2/html/tut-02.html (3 of 11) [11/1/1999 7:01:45 PM]

POOMA Tutorial 2: Red/Black Update

Const Arr ay isnot the same asdeclaringittobeaconst Array. Asmentioned earlier, POOMA's Ar r ay classes
are handles on actual data storage areas. If something isdeclaredto beaconst Arr ay, it cannot itself be modified, but
the datait refersto can be. Thisisillustrated in line 16, which modifies the elements of V even though it is declared
const . Put another way, the following is perfectly legal:

Array<l1l> original (10);
const Array<l1l>& reference = original;
reference(4) = 3.14159;

If an immutable array isrealy desired, the program must use the class Const Ar r ay. This class overloads the element
access method oper at or () to return a constant reference to an underlying data el ement, rather than a mutable
reference. As aresult, the following code would fail to compile:

Array<l1> original (10);
Const Array<1>& reference = original;
reference(4) = 3.14159;

since the assignment on its third line is attempting to overwrite aconst reference. Infact, Ar r ay is derived from
Const Ar r ay by adding assignment and indexing that return mutable references. Thisallowsan Ar r ay to be used asa
Const Ar r ay, but not vice versa. There is a subtle issue here though. One cannot initialize a Const Ar r ay object with
an Ar r ay object. The following code would fail to compile:

Array<1> a(10);
Const Array<1> ca(a);
This problem results from a design decision to allow a Const Ar r ay to be constructed with an arbitrary domain:
t enpl at e<cl ass Subl>
Const Array(const Subl & sl);

Whilean Array isaConst Ar r ay, thisfunction will be chosen by C++ compilers over the copy constructor because
an exact match is preferred over a promotion to a base class. To avoid this problem, pass arrays by reference.

It is good programming practice to use Const Ar r ay wherever possible, both because it documents the way the
particular array is being used, and because it makes it harder (although not impossible) for functions to have inadvertent
side effects.

It isimportant to note that the Range argumentsto Appl yJacobi () must be defined asconst references. The
reason for thisisthat C++ does not allow programs to bind non-const references to temporary variables. For example,
the following codeisillega:

void fxn(int& i)

{

}

voi d caller()

{ int a =5;
} fxn(a + 3);

Similarly, when the main body of the relaxation program adds offsets to the Range objects| and J on lines 44, 46, and
47, the overloaded addition operator creates atemporary object. Appl yJacobi () must therefore declare its
corresponding argumentsto beconst Range<1>&.

The bottom lineisthat if aroutine can get atemporary object, arguments should be passed by value or by const
reference. If thereis no possibility of the routine getting a temporary, arguments can be declared to be non-const

file:///E|/r2/html/tut-02.html (4 of 11) [11/1/1999 7:01:45 PM]

POOMA Tutorial 2: Red/Black Update

reference. For example:

tenplate<int D, class T, class E>
void f(const Array<D, T, EBE>& a);

tenplate<int D, class T, class E>
void g(Array<D, T, B> a);

tenplate<int D, class T, class E>
void h(Array<D, T, BE>& a);

voi d exanpl e()

{

Interval <3> I (...);

Array<3> x(...);

f(x); Il oK

9(x); /1 OK

h(x); Il K

f(x(1)); Il K

g(x(1)); Il K

h(x(1)); /1 Bad, x(l) generates a tenporary.
}

Note again that in the functionsf (), g() , and h() , the array argument a can appear on the left hand side of an
assignment. Thisisbecause Ar r ay islikean STL iterator: aconst iterator or const Arr ay can be dereferenced, it
just can't be modified itself. If you want to ensure that the array itself can't be changed, use Const Arr ay.

Calling the Function

Lines 43-47 bring all of thistogether by passing the arrays V and b by value to Appl yJacobi () . The program makes
four callsto this function; the first pair update the red array elements, while the second pair update the black array
elements.

To see why two calls are needed to update each pair, consider the fact that each Range object specifies one half of the
array's elements. The use of two orthogonal Ranges therefore specifies (1/2)2=1/4 of the array's elements. Simple
counting rules of thiskind are a useful check on the correctness of complicated subscript expressions.

As discussed above, each call to Appl yJacobi () constructs one temporary Ar r ay and one temporary

Const Ar r ay, each of which is bound to aview engine instead of a storage engine. Since these temporary objects are
alocated automatically, they are also automatically destroyed when the function returns. POOMA uses reference
counting to determine when the last handle on an actual area of array storage has been destroyed, and releases that area's
memory at that time. Note that in this case, both arrays are bound to view engines, which do not have data storage areas
of their own, so creating and destroying Appl yJacobi () 'sargumentsisvery fast.

A Note on Expressions

Asyou may have guessed from the preceding discussion, POOMA expressions are first-class Const Ar r ayswith an
expression engine. As a conseguence, expressions can be subscripted directly, asin:

Array<l1> a(lnterval <1>(-4, 0)), b(5), c(5);
for (int i =0; i <5; i++4)
c(i) =(a+2.0* b)(i);

Thisis equivalent, both semantically and in performance, to the loop:

file:///E|/r2/html/tut-02.html (5 of 11) [11/1/1999 7:01:45 PM]

POOMA Tutorial 2: Red/Black Update

for (int i =0; i <5; i++4)
c(i) =a(i - 4) + 2.0 * b(i);

Note that the offsetting of the non-zero-based arrays in expressions is handled automatically by POOMA.

POOMA also now includes afunction called i ot a() , which alows applications to initialize array elementsin paralel
using expressions that depend on elements' indices. Instead of writing a sequential loop, such as.

for (i =0; i < nl; ++i)

{
for (j =0; j < n2; ++4)
{
a(i,j) = sin(i)+*5;
}
}

aprogram could simply use:

a = sin(iota(nl, n2).comp(0)) + iota(nl, n2).conp(1)*5;

Ingenera, i ot a(domai n) returnsaConst Ar r ay whose elements are vectors, such that i ot a(dormai n) (i,) is
Vector<2,int>(i,]j).Thesevauescan beusedinexpressions, or stored in objects, asin:

lota<2>::Index_t I(iota(nl, n2).conmp(0));
| ota<2>::1ndex_t J(iota(nl, n2).conp(l));
a =sin(1*0.2) + J*5;

Using Two-Dimensional Ranges

Asageneral rule, whenever a set of objects are always used together, they should be combined into asingle larger
structure. If we examine the example program shown at the start of this tutorial, we can see that the two Range objects
used to subscript arrays along their first and second axes are created in the same place, passed as parameters to the same
function, and always used as a pair. We could therefore improve this program by combining these two objectsin some

way.

In POOMA, that way isto use a2-dimensional | nt er val or Range instead of apair of 1-dimensional | nt er val sor
Ranges. A 2-dimensionall nt er val isjust the cross-product of its 1-dimensional constituents: it specifies adense
rectangular patch of an array. Similarly, a 2-dimensional Range is a generalization of the red or black squareson a
checkerboard: the elements it specifies are regularly spaced, but need not have the same spacing along different axes.

An N-dimensionall nt er val isdeclared in the same way asits 1-dimensional cousin. An N-dimensional | nt er val is
usualy initialized by giving its constructor N 1-dimensionall nt er val sasarguments, as shown in the following
example:

Interval <2> calc(Interval <1>(1, N), Interval <1>(1, N);

Multi-dimensional POOMA arrays can be subscripted with any combination of 1-, 2-, and higher-dimensional indices, so
long as the total dimensionality of those indices equals the dimension of the array. Thus, a4-dimensional array can be
subscripted using:

« four 1-dimensional indices

« az-dimensional index and a pair of 1-dimensional indices (in any order)

« apair of 2-dimensional indices

» one 3-dimensional index and one 1-dimensional index (in any order); or

« asingle 4-dimensional index.

file:///E|/r2/html/tut-02.html (6 of 11) [11/1/1999 7:01:45 PM]

POOMA Tutorial 2: Red/Black Update

If only asingle array element is required, a new templated index class called Loc can be used as an index. Like other
domain classes, this class can specify up to seven dimensions; unlike other domain classes, it only specifiesasingle
location along each axis. Thus, the declaration:

Loc<2> origin(0, 0);

specifiesthe origin of agrid, while the declaration:

Loc<3> centerBottom(N2, N2, 0);

specifies the center of the bottom face of an Nx Nx N rectangular block. Loc objects are typically used to specify key
pointsin an array, or as offsets for specifying shifted domains. The latter of these usesis shown in the function

Appl yJacobi () inthe program below (which isincluded in the release as exanpl es/ Sol ver s/ RBJacobi). This
program re-implements the red/black relaxation scheme introduced at the start of this tutorial using 2-dimensional
subscripting:

01 #include "Poonma/ Arrays. h"

02

03 #include <iostreanr

04

05 // The size of each side of the domain. Miust be even.
06 const int N = 20;

07

08 // Apply a Jacobi iteration on the given donain.

09 void

10 Appl yJacobi (

11 const Array<2> &V, /! to be rel axed

12 const ConstArray<2> & b, [/ fixed term

13 const Range<2> & | /'l region of calculation
14){

15 V(1J) =0.25 * (V(lIJ+Loc<2>(1, 0)) + V(IJ+Loc<2>(-1, 0)) +
16 V(1J+Loc<2>(0, 1)) + V(IJ+Loc<2>(0, -1)) - b(13J));
17 '}

18

19 int

20 mai n(

21 i nt ar gc, /] argunent count

22 char* argv[] /1 argunent vector
23){

24 /1 Initialize POOVA.

25 Pooma::initialize(argc, argv);

26

27 /! The cal cul ati on domai n.

28 Interval <2> calc(Interval <1>(1, N2), Interval<1>(1, N2));
29

30 /1 The domain with guard el ements on the boundary.

31 I nterval <2> guarded(Interval <1>(0, N-1) , Interval <1>(0, N1));
32

33 /!l The array we'll be solving for.

34 Array<2> V(guarded);

35 Xx = 0.0;

36

37 /1 The right hand side of the equation.

38 Array<2> b(cal c);

39 b = 0.0;

40 b(N2, N2) =-1.0;

file:///E|/r2/html/tut-02.html (7 of 11) [11/1/1999 7:01:45 PM]

POOMA Tutorial 2: Red/Black Update

41

42 /! The interior domain, now wth stride 2.
43 Range<2> | J(Range<1>(1, N3, 2), Range<1>(1, N3, 2));
44

45 /1 lterate 100 tines.

46 for (int i=0; i<100; ++i)

47 {

48 Appl yJacobi (V, b, 1J);

49 Appl yJacobi (V, b, IJ+Loc<2>(1, 1));

50 Appl yJacobi (V, b, IJ+Loc<2>(1, 0));

51 Appl yJacobi (V, b, IJ+Loc<2>(0, 1));

52 }

53

54 /!l Print out the result.

55 std::cout << V << std::endl;

56

57 /! Clean up and report success

58 Pooma: : finalize();

59 return O;

60 }

The keys to this version of red/black relaxation arethe | nt er val declarations on lines 28 and 31, and the array
declarations on lines 34 and 38. Thefirst | nt er val declaration defines the N-2 x N-2 region on which the calculation
is actually done; the region defined by the second declaration pads the first with an extra column on each side, and an
extrarow on the top and the bottom. These extra el ements are not part of the problem domain proper, but instead are used
to ensure zero boundary conditions. Any other arbitrary boundary condition could be represented equally well by
assigning values to these padding elements.

Usingl nt er val objectsthat run from 1 to N-2 to specify the dimensions of thel nt er val object cal ¢ defined on
line 28 means that when the array b is defined (line 38), itslegal indices also run from 1 to N-2 along each axis. While
POOMA uses 0..N-1 indexing by default, any array can have arbitrary lower and upper bounds along any axis, as this
example shows. Thisis particularly useful when the natural representation for a problem uses a domain whose indices are
in-N..N.

Note that line 31 could equally well have been written:

I nt erval <2> guarded(N, N);

In other words, integers work inside of Donai n declarations the same way they do in Ar r ay declarations. If a program
needs to declare apaint, it can use:

I nterval <2> x(Interval <1>(2, 2), Interval <1>(3, 2));
The declaration of cal ¢ on line 28 does need to be written asit is because the axes start at 1.

Examination of the update loop on lines 48-51, and the update assignment statement on lines 15-16, shows that the
padding elements are never assigned to. Instead, the assignment on lines 15-16 only overwrites the interior of the array V.
Note also that the domain used for the array b, which represents the fixed term in the Laplace equation, is only defined
on the inner N-2 x N-2 domain. While the memory this savesisinconsequential in this 20x20 case, the savings grow
quickly asthe size and dimension of the problems being tackled increase.

Periodic Boundary Conditions

Our last ook at red/black updating replaces the zero boundary condition of the previous examples with periodic
boundariesin both directions. Asisusual in programs of thiskind, thisisimplemented by copying the values on one
edge of the array into the padding elements next to the array's opposite edge after each relaxation iteration. For example,
the padding elements to the right of the last column of the array are filled with the values from the first actual column of

file:///E|/r2/html/tut-02.html (8 of 11) [11/1/1999 7:01:45 PM]

POOMA Tutorial 2: Red/Black Update

the array, and so on. In the program shown below (included in the release as
exanpl es/ Sol ver s/ Peri odi cJacobi), the"actua" values of the array V are stored in the region [1..N]x[1..N].
Elements with an index of either 0 or N+1 on either axis are padding, and are to be overwritten during each iteration.

The function that actually updates the periodic boundary conditionsis called Appl yPeri odi c(), and is shown on
lines 20-28 below. The key to understanding this code is that when a"naked" integer is used to subscript a POOMA
array, the result of that subscripting operation is reduced by one dimension in relation to that of the subscripted array.
Thus, if a2-dimensional array is subscripted using two specific integers, the result is ascalar value; if that same array is
subscripted using an integer and al nt er val or Range, theresult isa 1-dimensional array.

Note that subscripting an Ar r ay withalLoc<2> yields asingle scalar value, just as subscripting with two integers does,
while subscripting with an | nt er val or Range that happens to refer to just one point yields an Ar r ay with just one
element. There isn't azero-dimensional Ar r ay (at least not in this release of POOMA), which iswhat the Loc<2>
would have returned. The reduction in rank has to come from compile-time information, so Loc and integers reduce
dimensionality, butl nt er val and Range do not.

01 #include "Poonma/ Arrays. h"

02

03 #include <iostreanr

04

05 // The size of each side of the domain. Miust be even.
06 const int N = 18;

07

08 // Apply a Jacobi iteration on the given donain.

09 void

10 Appl yJacobhi (

11 const Array<2> &V, // to be rel axed
12 const ConstArray<2> & b, /1 fixed term

13 const Range<2> & 1J /'l region of calculation
14){

15 V(1J) = 0.25 * (V(IJ+Loc<2>(1,0)) + V(I1J+Loc<2>(-1,0)) +
16 V(1J+Loc<2>(0,1)) + V(IJ+Loc<2>(0,-1)) - b(1J));
17 '}

18

19 // Apply periodic boundary conditions by copying each slice in turn.
20 wvoid

21 Appl yPeri odi c(

22 const Array<2> & V /!l to be w apped
23){

24 /1l Cet the horizontal and vertical extents of the donuain.
25 Interval <1> | = V.domain()[0],

26 J = V.domain()[1];

27

28 /'l Copy each of the four slices in turn.

29 V(O0, J) = V(N, J);

30 VIN+L,) = V(1, J);

31 V(1 0) = V(I, N;

32 V(lI, N+1) = V(I, 1);

33 }

34

35 int nmain(

36 i nt ar gc, /1l argunent count

37 char* argv[] /| argunent vector
38){

39 /1 Initialize POOVA.

40 Pooma: :initialize(argc, argv);

41

file:///E|/r2/html/tut-02.html (9 of 11) [11/1/1999 7:01:46 PM]

POOMA Tutorial 2: Red/Black Update

42 /! The cal cul ati on donai n.

43 Interval <2> cal c(Interval <1>(1, N), Interval <1>(1, N));
44

45 /1 The domain with guard el enents on the boundary.
46 I nterval <2> guarded(Interval <1>(0, N+1), Interval <1>(0, N+1));
47

48 /1 The array we'll be solving for.

49 Array<2> V(guarded);

50 V = 0.0;

51

52 /1 The right hand side of the equation.

53 Array<2> b(cal c);

54 b = 0.0;

55 b(3*N 4, N4) =-1.0;

56 b(N4, 3*N4) = 1.0;

57

58 /! The interior domain, nowwth stride 2.

59 Range<2> | J(Range<1>(1, N1, 2), Range<1>(1, N1, 2));
60

61 /1 lterate 200 tines.

62 for (int i=0; i<200; ++i)

63 {

64 Appl yJacobi (V, b, 1J);

65 Appl yJacobi (V, b, 1J+Loc<2>(1,0));

66 Appl yJacobi (V, b, IJ+Loc<2>(0,1));

67 Appl yJacobi (V, b, IJ+Loc<2>(1,1));

68 Appl yPeri odi c(V);

69 }

70

71 /!l Print out the result.

72 std::cout << V << std::endl;

73

74 /!l Clean up and report success.

75 Pooma: : finalize();

76 return O;

77 1}

Note that, as we shall seein the next tutorial, the body of Appl yPeri odi c() could more generaly be written:

29 V(Il.first(), J)
30 V(l.last(), J)
31 V(I, J.first())
32 V(I, J.last())

V(I.last()-1, J);
V(I.first()+1, J);
V(lI, J.last()-1);
Vv(lI, J.first()+1);

Operations and Their Results

One of the primary features of the POOMA array concept is the notion that "everythingisan Ar r ay". For example, if
you take aview of an Ar r ay, theresult isafull-featured array. If you add two Ar r ay stogether, theresultisan Ar r ay.
The table below illustrates this, using the declarations:

Array<2, Vector<2>>a

Array<2> b

| nt erval <2> I

I nt erval <1> J

Range<2> R

file:///E|/r2/html/tut-02.html (10 of 11) [11/1/1999 7:01:46 PM]

POOMA Tutorial 2: Red/Black Update

Operations Involving Arrays

] Operation Example Output Type

Takng aview of the a() Array<2, Vect or <2>, Bri ckVi ew<2, t rue>>
array's domain

Taking aview using a(l) Array<2, Vect or <2>, Bri ckVi ew<2, t rue>>

anl nt er val

Taking aview using a a(R Array<2, Vect or <2>, Bri ckVi ew<2, f al se>>
Range

[Taking aslice | a(2,3J) | Array<1, Vect or<2>, Bri ckVi ew<2, true>>
Indexing a(2,3) | Vect or <2>&

Taking aread-only

view of the array's a.read() Const Array<2, Vect or <2>, Bri ckVi ew<2, t rue>>
domain

Taking aread-only

view using a.read(l) Const Array<2, Vect or <2>, Bri ckVi ew<2, t r ue>>
anl nt er val

Tak|ng gread—only a.read(R) Const Array<2, Vect or <2>, Bri ckVi ew<2, f al se>>
\view using a Range

;?Eéng aread-only a.read(2,J) Const Array<1, Vect or <2>, Bri ckVi ew<2, tr ue>>
Readinganelement | a.read(2, 3) Vect or <2>

\-Il-ﬁ'e\(,:/ng & component a.conmp(1) Array<2, doubl e, ConpFwd<Engi ne<2, Vect or <2>, Bri ck>, 1>>

Taking aread-only

. a.readConp(1l) |[ConstArray<2, doubl e, ConpFwd<Engi ne<2, Vect or <2>, Bri ck>, 1>>
component view

Applying a unary si n(a) Const Array<2, Vect or <2>, Expr essi onTag<
operator or function Unar yNode<FnSi n, Const Array<2, Vect or <2>, Bri ck>>>>
; ; Const Array<2, Vect or <2>, Expr essi onTag<
Appzmg a]EJIng.y a+b Bi nar yNode<OpAdd, Const Arr ay<2, Vect or <2>, Bri ck>,

operator or function Const Ar r ay<2, doubl e, Bri ck>>>>

Indexing is the only operation that does not generate an Ar r ay. All other operations generate an Ar r ay or
Const Ar r ay with adifferent engine, perhaps a different element type, and, in the case of a dlice, adifferent
dimensionality. Const Ar r aysresult when the operation is read-only.

Summary

Thistutoria has shown that POOMA arrays can be subscripted using objects that represent index sequences with regular
strides. Subscripting an array with a non-scalar index, or passing an array by value as afunction parameter, creates a
temporary array. While explicitly-declared arrays are bound to storage engines that encapsul ate actual data storage, each
temporary array is bound to aview engine, which aliases a storage engine's data area. Programs should use the templated
class Const Ar r ay to create immutable arrays, since the object created by aconst Ar r ay declaration is actually an
immutable handle on a mutabl e storage region. Finally, multi-dimensional and integer subscripts can be used to select
subsections of arrays, and they yield results of differing dimensions.

[Prev] [Home] [Next]
Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/tut-02.html (11 of 11) [11/1/1999 7:01:46 PM]

http://www.acl.lanl.gov/pooma/

POOMA Tutorial 3: Calculating Residuals

Parallel"Object-Oriented
Methods and Applications

POOMA Tutorial 3
Calculating Residuals

Contents.
Introduction
I mplementing Reduction Using Loops
More on Domains
Some Subtleties
Using Built-In Reduction Functions
A Look Under the Hood

Summary

Introduction

Itiseasy to assign ascalar to an array in POOMA. Assigning an array to ascalar isabit more complicated, since the
array's values must be combined using some operator. Combinations of thiskind are called reductions; common
reduction operators include addition, maximum, and logical OR.

Thistutoria shows how to perform reductions on arrays by querying their shape and size. Functions that do this are much
more flexible than functions that rely on hard-coded dimensions and extents.

Implementing Reduction Using Loops

The programs shown so far have performed a fixed number of relaxation steps, with no regard for the actua rate at which
the calculation is converging. A better strategy isto relax the system until the residual error islessthan some threshold,
while capping the number of iterations in order to avoid the program looping forever if it is given an ill-conditioned
problem.

The program below (included in the release asexanpl es/ Sol ver s/ Resi dual s) evaluatesthe residual error by
summing the squares of the pointwise differences between the left and right sides of the usual update equation (line 16in
the code below). Lines 67-68 calculate this difference array, and passit to the function sum sqr () .

01 #include "Poorma/ Arrays. h"

02

03 #include <iostreanr

04

05 // The size of each side of the domain.
06 const int N = 20;

07

08 // Apply a Jacobi iteration on the given donain.

09 wvoid

10 Appl yJacobi (

11 const Array<2> &V, /1l the domain

12 const Const Array<2> & b, /] constant condition

file:///E|/r2/html/tut-03.html (1 of 10) [11/1/1999 7:01:51 PM]

POOMA Tutorial 3: Calculating Residuals

13 const Range<1> &1, /1 first axis subscript

14 const Range<1> & J /'l second axis subscri pt

15){

16 V(I,J) =0.25 * (V(I1+1,3) + V(I1-1,3) + V(I,J3+1) + V(I,J-1) - b(l,3d));
17 '}

18

19 // Calculate the sumof squares of all the elenments in a 2D ConstArray.
20 tenpl ate<cl ass Val ueType, class Engi neTag>
21 Val ueType sum sqr(const ConstArray<2, Val ueType, Engi neTag> &A)

22

23 Val ueType sum = 0O;

24

25 int first_ 0 = A domain()[O0].first(),

26 last 0 = A donmain()[0].last(),

27 first 1 = Adomain()[1].first(),

28 last 1 = A donmain()[1].last();

29

30 for (int index_ O=first_0O; index_O<=last_0; ++i ndex_0)

31 {

32 for (int index_1=first_1; index_1<=last_1; ++i ndex_1)
33

34 Val ueType val ue = A(index_0, index_1);

35 sum += val ue * val ue;

36 }

37 }

38 return sum

39 }

40

41 int

42 mai n(

43 i nt ar gc, /1l argunent count

44 char* argv]] /1 argunent |i st

45) {

46 /1 Initialize POOVA.

47 Pooma: :initialize(argc, argv);

48

49 /!l The array we'll be solving for.

50 Array<2> V(N, N)

51 V = 0.0;

52

53 /1 The right hand side of the equation.

54 Array<2> b(N, N);

55 b = 0.0;

56 b(N2, N2) =-1.0;

57

58 /1 The interior domain.

59 Interval <1> (1, N-2), J(1, N2);

60

61 /1l lterate until converged, or a max of 1000 tinme steps.
62 doubl e residual = 1.0; // anything greater than threshold
63 int iteration;

64 for (iteration=0; iteration<1000 && residual >1le-6; ++iteration)
65 {

66 Appl yJacobi (V, b, |, J);

67 residual = sumsqr(V(I+1,J3) + V(I1-1,J) + V(I,J+1) + V(I,J-1)
68 - (b(1,3) +4.0V(1,3J)));

file:///E|/r2/html/tut-03.html (2 of 10) [11/1/1999 7:01:51 PM]

POOMA Tutorial 3: Calculating Residuals

69 }

70

71 /! Print out the result.

72 std::cout << "lterations = " << iteration << std::endl;
73 std::cout << "Residual =" << residual << std::endl;
74 std::cout << V << std::endl;

75

76 /1 Cean up and report success.

77 Pooma: : finalize();

78 return 0O;

79 }

Thefunction sum sqr () takesa2-dimensional array of arbitrary type, with an arbitrary engine, asits argument.
Templating this function by the value type of the array means that the function can be used efficiently for arrays of other
types, such asi nt , without any changes. Templating on the engine tag type is at |least asimportant, for reasons that will
be discussed below.

Line 23 declares the function's result variable. This declaration uses the type parameter Val ueType, sothat sum sqr
will work for arrays of any base type supporting addition, product, and assignment (the three operations applied to sum
and the values read from the array). Note that sum_sqr () isdefined to returnaVal ueType aswell.

Lines 25-28 then determine the extent of the array A. The method Ar r ay: : domai n() returns an instance of the
templated class Domai n, which records the extent of the array's domain along each axis. Subscripting the result of

A. dommi n() with O or 1 returns atemporary object that represents the size of the specified axis; thefi r st () and

| ast () callson lines 25-28 therefore record the starting and ending indices of the array in both dimensions, regardless
of the array's type or storage mechanism.

Lines 25-28 could aso be written:

int first_0 = Afirst(0),
last_ 0 = A last(0),
first_ 1 = Afirst(l),
last 1 = Alast(l);

since Ar r ay provides short cuts for accessing domain extents.

It isimportant to note that the indicesto sum sqr () 'sargument A are contiguous; that is, they run from 0 to an upper
bound with unit stride in both dimensions. One of the many purposes of the Ar r ay classisto map logical, user-level
indicesto an actual data area. Once an array section has been selected by using | nt er val sor Rangesasindices, that
section appears to users to be compact and contiguous. Thus, the following (very contrived) code first sets every third
element of avector to 3, then sets every ninth element to 9, since the recursive call to set Thr ee() selects every third
element from its argument, which itself is every third argument of the origina array:

const int N = 20;
Range<1> stride(0, N1, 3);

voi d set Three(Array<l> a, doubl e val ue, bool recurse)

{
a = val ue;
if (recurse){
Range<1> newStride(0, (N-1)/3, 3);
set Three(a(newsStri de), val ue*value, false);
}
}
int main(int argc, char* argv[])
{

Array<l> a(N);

file:///E|/r2/html/tut-03.html (3 of 10) [11/1/1999 7:01:51 PM]

POOMA Tutorial 3: Calculating Residuals

a = 0;
set Three(a(stride), 3, true);
}

The rest of thisfunction is straightforward. The nested loops beginning on line 30 traverse the array along both axes; the
assignment on line 34 reads a value from the array, while that on line 35 accumulates the square of each valuein sum

More on Domains

POOMA provides afew useful shortcuts for working with domains, which can be used to generalize routines that
manipulate arrays of varying sizes and shapes. The current version of the library provides three "wildcard" domains:

« Al | Donai n<Di n> does not take any constructor arguments. It isinterpreted to mean “the whole of the relevant
domain".

o Left Domai n<Di np's constructors take either a set of Di mintegers, or aLoc<Di n. It interprets these as the
right endpoint of anew domain, and is used to specify aleft (low-indexed) subdomain within alarger domain.

« Ri ght Domai n<Di n>issimilar to Lef t Donmai n, but isinterpreted as the left endpoint of a (high-indexed)
subdomain within alarger domain.

Wildcards are used to take a view of an existing Ar r ay in away that isrelative to the existing domain. For example,
suppose a program has defined an Ar r ay<2> onthedomain[1: 10: 1, 5:8:1]:

Array<2> A(lnterval <1>(1,10), Interval <1>(5,8));
The following expression would take aview of thisarray that included the elements[3: 6: 1, 5:8: 1] (i.e, only some
of the first dimension, but al of the second):

A(l nterval <1>(3,6), Al Donain<l>());

Note that the parentheses after Al | Domai n<1> are necessary because this statement is constructing an unnamed
instance of thistemplated class.

If aprogram wants to take a view that starts with a given endpoint on one end, and uses the existing endpoint on the other
end, it must usethe Lef t Dormai n or Ri ght Domai n wildcards. For example:

A(Lef t Domai n<1>(6), Ri ght Domai n<1>(7));

accesses the lements of Ainthedomain[1: 6: 1, 7: 8: 1], where Aisthe same array declared above. Note that these
wildcard domains areinclusive at both ends: Lef t Dormai n usesthe left portion of the existing domain, chopping it off
at the given right endpoint, while Ri ght Dormai n uses the right portion of the existing domain, starting from the given
left endpoint.

Domain wildcards can be used in combination with Ar r ay methodssuch asfirst () andl ast () to get viewsthat
refer to just the left or right edges of adomain. For example:

A(Lef t Domai n<1>(A.first(0) + 1), Al Domai n<1>())
refers to the width-2 domain on left edge of the first dimension of the array A.

Finaly, Ar r ay and Const Ar r ay overload oper at or () , and provide amethod r ead() , to return aview of the
array's entire domain. The Ar r ay version of oper at or () returns awritable view; otherwise, the view is read-only.
These methods are useful because they allow programmers to write zero-based algorithms for arrays, no matter their
domain. For example, the following copies elements of b into a:

Array<1> a(lnterval <1>(-4, 0)), b(5);

for (int i =0; i <5; i++4)

a() (i) =b()(i);

file:///E|/r2/html/tut-03.html (4 of 10) [11/1/1999 7:01:51 PM]

POOMA Tutorial 3: Calculating Residuals

Some Subtleties

Returning to the implementation of reductions once again, the most interesting thing about the sum sqr () functionis
not its implementation, but what gets passed to it. The function call on lines 67-68 binds sum sqr () 'sargument A to
the result of the expression:

V(1+1,3) + V(1-1,3) + V(1,3+1) + V(1,3-1) - (b(1,J) + 4.0*V(1,3)));

Most languages that support whole-array operations, such as Fortran 90, would create a full-sized temporary array by
evaluating this expression at every point, and then pass that temporary variableto sum sqr () . POOMA does not do
this; what it doesinstead is the key to its high performance.

Recall once again that arrays in POOMA do not actually store data, but instead act as handles on engines that know how
to return values given sets of indices. Some engines reference data storage directly; that is, they translate a set of indices
into avalue by looking up the value corresponding to those indices in memory. However, POOMA also contains
expression engines, which use expression templates to calculate array values on demand.

When an expression like the one above is encountered, POOMA does not calculate all of its values at once. Instead, the
expansion of the overloaded operators used in the expression creates an expression engine as the program is compiled.
Whenever the array wrapper around this engine is subscripted, the engine cal culates and returns the corresponding value.

Thistechniqueis called "lazy evaluation" and is the reason why the body of the inner loop of sum sqr () iswritten as:

Val ueType value = A(index_0, index_1);
sum += val ue * val ue;

If the body of thisloop was instead written as:

sum += A(index_0, index 1) * A(index_ 0, index_1);

then the expression engine would evaluate the value of A at each location twice, since subscripting A is what triggers
element evaluation.

The existence of expression enginesis one of the reasonswhy sum sqr () , and other functions that use POOMA,
should template the engine type as well as the data type of their arguments. If the engine type of sum sqr () 'sA
argument was not templated, it would default to Br i ckEngi ne, which is the engine that manages a dense, contiguous
block of memory. The call on lines 67-68 would therefore be evaluated by constructing an expression engine (good), then
evaluating it at each location in order to fill in the argument A (bad).

One mistake that is commonly made by programmers who are first starting to use POOMA isto forget that different
arguments to a function can have different data or engine types. Consider, for example, afunction whose job it isto
compute the sum of the squares of the elementwise difference between two vectors. The natural way to write it (assuming
that the lengths of the vectors are known to be the same) is:

t enpl at e<cl ass Val ueType, class Engi neTag>
Val ueType sum sqr _diff(
const Const Array<l, Val ueType, Engi neTag>& Left,
const Const Array<l, Val ueType, Engi neTag>& Ri ght
){

Val ueType sum = 0;

int first
| ast

Left.first(0),
Left.last(0);

for (int index=first; index<=last; ++i ndex)

Val ueType val ue = Left(index) - Right(index);

file:///E|/r2/html/tut-03.html (5 of 10) [11/1/1999 7:01:51 PM]

POOMA Tutorial 3: Calculating Residuals

sum += val ue * val ue;

}

return sum

}

However, if sum sqr _di ff () iswritten thisway, the compiler can only instantiate it when the data types and the
engines of its arguments are exactly the same. This meansthat acal like:

Array<l, int> i ntvec(10);
Array<l, float> floatvec(10);
doubl e result = sumsqr_diff(intvec, floatvec);

would fail to compile, since the template type argument Val ueType cannot simultaneously matchi nt , f | oat , and
doubl e. Similarly, if one argument tosum sqr _di f f () wasaplainold Ar r ay, while another argument was an
expression, the compiler would either haveto force full evaluation of the expression (in order to get something with the
same engine type as the plain old array), or give up and report an error.

The most general way to define this function is as shown below. Both the data and engine types of the arguments are
independent, so that the compiler has the degrees of freedom it needs to instantiate this function for awide variety of
arguments:

t enpl at e<cl ass LeftVal ueType, class LeftEngi neTag,
cl ass Ri ghtVal ueType, class Ri ght Engi neTag>
doubl e sum sqr_diff(
const Const Array<l, LeftValueType, LeftEngi neTag>& Left,
const Const Array<1, RightValueType, R ghtEngi neTag>& Ri ght
) {

doubl e sum = 0O;

int first
| ast

Left.first(0),
Left.last(0);

for (int index=first; index<=last; ++i ndex)

doubl e value = Left(index) - Right(index);
sum += val ue * val ue;

}

return sum

}

But what's this? Everything important in this function is templated, except itsdoubl e return type. If a user-defined
extra-precision numerical typeisused in the array arguments, the accumulator will have lower precision than the values
being accumulated. Why isn't this function defined as:

/1 1 LLEGAL
t enpl at e<cl ass LeftVal ueType, class LeftEngi neTag,
cl ass Ri ghtVal ueType, class R ght Engi neTag,
cl ass ReturnType>
Ret urnType sum sqgr _di ff(
const ConstArray<1, LeftValueType, LeftEngi neTag>& Left,
const Const Array<1, RightValueType, R ghtEngi neTag>& Ri ght
) {
Ret ur nType sum = O;
/1 body of function
return sum

file:///E|/r2/html/tut-03.html (6 of 10) [11/1/1999 7:01:51 PM]

POOMA Tutorial 3: Calculating Residuals

}

so that the compiler can, for example, instantiate the function with areturn type of QuadPr eci si on when presented
with the following:

Array<2, QuadPrecision> A(N, N);

Array<2, doubl e> B(N, N);

initialization

QuadPrecision result = sumsqgr_diff(A B);
The unfortunate answer isthat overloading and templatesin C++ doesn't work that way. To take a simple example,
suppose an application has a set of functions for writing to afile, such asput (char) , put (char*) ,and put (i nt).

When the code put (x) isseen, the compiler uses only the type of the argument x to figure out which function to call.
There is no way for the compiler to distinguish between:

ostreams = put(X);

and

FI LE* s=put(Xx);

because the return type of put () isnot considered by the compiler during template instantiation. While there are good
technical reasonsfor this, it is one of the biggest obstacles that the implementers of the POOMA library (and other
templated libraries) have had to face. Asthe workarounds used in the library itself are too complex for these introductory
tutorials, the best solution for newcomersto the library is either to use a high-precision type like doubl e, or to use the
type of one of the arguments to the function or method, and hope that it will be sufficiently precise.

Using Built-In Reduction Functions

Thesum sqr () function on lines 20-39 above uses object-oriented techniques to achieve generality, but still has the
loops of aC or Fortran 77 program. These loops not only clutter the code, they also do not exploit any parallelism that
the hardware this program is running on might offer. A much better solution isto use one of POOMA's built-in reduction
functions, in this case sum() . The program that does thisisincluded in the release as

exanpl es/ Sol ver s/ Resi dual 2; the key change, to sum sqr () , is shown below:

t enpl at e<cl ass Val ueType, class Engi neTag>
Val ueType sum sqgr(const Const Array<2, Val ueType, Engi neTag>& A)

{ return sumA * A);
}
As might be expected, POOMA provides many other reduction functions:

sum sum all the elementsin an array
pr od multiply all of the elementsin an array
max find the maximum value in an array
mn find the minimum valuein an array
al | returnstrueif all of the array's elements are non-zero
any returns true if any of the array's elements are non-zero
bit O does a bitwise or of all of the elements
bi t And does a bitwise and of al of the elements

Note that since names such asbi t or and bi t and are actually reserved keywords in C++, some of these functions have
namessuch asbi t & and bi t And.

POOMA presently puts its reduction operators, along with most of the other things it defines, in the global namespace.

file:///E|/r2/html/tut-03.html (7 of 10) [11/1/1999 7:01:51 PM]

POOMA Tutorial 3: Calculating Residuals

Since al of these operators are templated on POOMA classes, there is very little chance of collision with other functions
with the same names. While it would be better programming practice to put everything into a namespace, like POOMA's
initialize() andfinalize() functions, some compilers still have trouble with the combination of templates and
namespaces. Once these compilers are brought up to full ANSI/ISO compliance, all POOMA functions and classes will
be placed in the Poorma: . namespace.

Of course, the obvious next step isto get rid of sum sqr () entirely, and move the residual calculation into the main
loop:

Array<2> tenp;
for (iteration=0; iteration<l000 && residual >le-6; ++iteration)

{
Appl yJacobi (V, b, 1, J);
tenp = V(1+1,3) + V(I1-1,3) + V(I,J3+1) + V(I,J3-1) - (b(l,J) + 4.0*V(I1,J));
residual = sum(tenp * temp);

}

Thisistempting, but wrong: if you compare the performance of this version of the program to that of the original, you
will find that this one is significantly slower. The reason is that the assignment tot enp in the middle of the loop above
does not create an expression engine, but instead allocates and fillsin an array. Only by passing an expression to a
templated function can a program give the compiler an opportunity to capture enough information about the expression to
create an array which is bound to an expression engine.

Lifewould clearly be better if there was some way to declare temporary array variables that were guaranteed to be bound
to expression engines, instead of storage engines. However, in order to do this, programmers would have to specify the
type of the temporary array exactly. By the time the residual expression above has been expanded, its type definitionis
several thousand characters long; the complexity of the types of longer expressions grows very, very quickly.

A Look Under the Hood

By now, you may be curious about how POOMA does what it does. This section therefore takes alook at the
implementation of reduction operators; while many details are omitted, it should give you some idea of how the library is
structured, and why some of its features appear the way they do.

We have three requirements for a global reduction function such assum() : it must be able to reduce arrays of arbitrary
size, it must be able to reduce arrays of arbitrary type, and it must efficiently use the same underlying machinery as other
reductions. The first two criteria need no justification; the third one is a software engineering concern. If each reduction
function has to be completely self-contained (i.e., if all of the parall€lization and looping code has to be duplicated), then
maintaining the library will be difficult. On the other hand, we cannot afford to write a generic reduction routine that
takes a function pointer or an object with avirtual method as an argument, since the cost of indirection inside an inner
loop is unacceptable.

POOMA's authors solve these problems by using atrait class to represent each primitive reduction operation. A trait
classis aclass whose only purpose isto be used to instantiate other templated classes. Each classin afamily of trait
classes defines constants, enumeration elements, and methods with identical names and signatures, so that they can be
used interchangeably.

Trait classes are not part of the C++ language definition, but are instead a way of using template instantiation as an
abstraction mechanism in yet another way. Instead of overriding virtual functions inherited from parent classes,
templated classes can use constants and methods supplied by template parameters in generic ways. For example, either of
the classes Red and G- een in the code below can be used to instantiate Bl ue, but when the values of those different
instances are printed, they display different values:

struct Red

{
b

enum{ Val = 123; }

file:///E|/r2/html/tut-03.html (8 of 10) [11/1/1999 7:01:51 PM]

POOMA Tutorial 3: Calculating Residuals

struct G een

{
b

t enpl at e<cl ass T>
cl ass Bl ue

{

enum { Val = 456; }

public:
Blue() : val _(T::Vval) {}
const unsigned int val _;

H

int main()

{
Bl ue<Red> br;
Bl ue<Green> bhg;
std::cout << br.val << std::endl;
std::cout << bg.val _ << std::endl;
return O;

}

Note that the example above declaresRed and Gr een asst r uct sinstead of ascl asses. The only difference between
the two kinds of declarationsisthat ast r uct 'smembersare publ i ¢ by default, whilethose of acl ass are
pri vat e. Thissaves one line each in the definitions of Red and G een.

POOMA defines afamily of trait classes representing the C++ assignment operators. These classes, which are part of the
Portable Expression Template Engine (PETE), are defined as follows:

PETE_DEFI NE_ASSIGN_ OP((a = b), OpAssign)

PETE_DEFI NE_ASSI GN_OP((a += b), OpAddAssi gn)

PETE DEFI NE_ASSI GN OP((a -= b), OpSubtractAssign)
PETE_DEFI NE_ASSIGN_ OP((a *= b), OpMultiplyAssign)
PETE_DEFI NE_ASSIGN_OP((a /= b), OpDi videAssign)
PETE_DEFI NE_ASSIGN_OP((a % b), OpMdAssign)
PETE_DEFI NE_ASSIGN OP((a | = b), OpBitwi seOrAssign)
PETE_DEFI NE_ASSI GN_OP((a &= b), OpBitw seAndAssi gn)
PETE_DEFI NE_ASSI GN_OP((a ~= b), OpBitw seXor Assi gn)
PETE_DEFI NE_ASSI GN_OP((a <<= b), OpLeft ShiftAssign)
PETE_DEFI NE_ASSI GN_OP((a >>= b), R ght Shift Assign)

where each use of the macro PETE_DEFI NE_ASSI GN_OP definesast r uct with the same members:

#def i ne PETE_DEFI NE_ASSI GN_OP(Expr , Op)

struct Op {
() {}

Oo(const p&) {}

enum {
tag = Bi naryUselLeft Tag

b,

tenpl at e<cl ass T1, class T2>
inline typenane Bi naryReturn<T1l, T2, Op>::Type_t
operator()(

— T -

file:///E|/r2/html/tut-03.html (9 of 10) [11/1/1999 7:01:51 PM]

POOMA Tutorial 3: Calculating Residuals

T1& a, \
const T2& b \
) const { \
return Expr; \
} \

s

Thisst r uct hasfour members: a default constructor, a copy constructor, a constant (defined using an enum called

t ag, and atemplated method oper at or () . (The default and copy constructors might appear to be unnecessary, but
omitting them results in Uninitialized Memory Read (UMR) warnings from memory checking tools such as Purify.) As
discussed earlier, templated methods are instantiated when and as required, just like templated functions, but are still
members of their containing class. In this case, thetemplated oper at or () takes a destination argument a of one type,
and a source argument b of another type, and performs the expression Expr (such as"a+=b") on them.

Thus, whenever QpAddAssi gn or another classin thisfamily of trait classesis used in an expression, the templated
method oper at or () isinstantiated with the appropriate types (such asi nt for the source, and doubl e for the
destination). Since this method is not virtual, there is no abstraction penalty: code using any particular instantiation of
this templated method will run at maximum speed.

The only feature of this macro that has not yet been explained is the use of Bi nar yRet ur n. Thisis another trait class,
whose only purpose isto define the type of the result of applying an operation Op to values of types T1 and T2. For
example, Bi nar yRet ur n<i nt, f| oat , OQpAdd> definesType_t tobef | oat , while

Bi nar yRet ur n<doubl e, f | oat, OoMul > defines Type_t tobedoubl e. Again, POOMA uses template
instantiation as an abstraction mechanism, so that logically repetitive code does not have to be physically replicated.
(Thisisanillustration of how to solve the problem discussed earlier of how to generalize the return type of afunction so
that it is adequate for the input argument types.)

With all of this machinery in place, sun() isnow easy to build:

tenplate<int Dim class T, class Engi neTag>
inline T sun(

const ConstArray<Dim T, Engi neTag>& a
){

}

The function just passes the array, avalue to initialize the sum with, and the reduction operation to be applied to ageneric
templated function called gl obal Reduct i on() . Thefirst argument to this function is the array; the second is an
initialization value (which is also the value returned if the array is empty), and the third specifies the operation to apply.
By thetime gl obal Reducti on() isexpanded, OpAddAssi gn: : oper at or () hasbeeninlined by POOMA's
expression template machinery. Note that the initialization value must be an identity element for the operation; while zero
worksin most cases, some operations (such as logical and bitwise OR) must use other values.

return gl obal Reduction(a, T(0), OpAddAssign());

Summary

POOMA achieves high performance using expression engines, which are constructed automatically during compilation,
and which evaluate complex array expressions on demand in order to avoid creation of temporary arrays. In order to
support mixed data types, and the use of both arrays and array expressions as arguments, user-defined functions should
be templated separately by both the data type and engine type of all of their arguments. Unfortunately, C++ does not
support templatization on function return type, which can make it difficult to write fully-generic functions. Finally,
POOMA provides severa built-in reduction functions, such as summation, product, and logical combination. These are
implemented using a generic framework, which can be extended by knowledgeable users.

[Prev] [Home] [Next]
Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/tut-03.html (10 of 10) [11/1/1999 7:01:51 PM]

http://www.acl.lanl.gov/pooma/

POOMA Tutorial 4: Further Topics

Parallel Object-Oriented
Methods.and Applications ™

POOMA Tutorial 4
Further Topics

Contents:
I ntroduction
Block And Evaluate
Small Vectors and Tensors
A Note on Tensor Accumulators
Using Multiple Patches
Guard Layers
Taking Layout Into Account
Component Views

Summary

Introduction

One of POOMA's most attractive features is its high performance on both single-processor and shared-memory
multiprocessor machines. As future releases of the library will also support distributed-memory multicomputers and
networks of workstations, POOMA's authors have had to think very carefully about how to obtain the best possible
performance across awide range of applications on different architectures.

The heart of the problem POOMA's authors face is that while data-parallel programming is a natural way to express many
scientific and numerical algorithms, straightforward implementations of it do exactly the wrong thing on modern RISC
architectures, whose performance depends critically on the re-use of dataloaded into cache. If a program evaluates A+B+C
for three arrays A, B, and C by adding A to B, then adding C to that calculation's result, performance suffers both because of
the overhead of executing two loops instead of one, but also (and more importantly) because every value in the temporary
array that stores the result of A+B hasto be accessed twice: once to write it, and once to read it back in. As soon asthis array
istoo large to fit into cache, the program's performance will drop dramatically.

Thefirst section of this tutorial explains what POOMA does to solve this problem. Subsequent sections discuss other
advanced aspects of POOMA, such as reduction functions that will execute efficiently regardless of how arrays are laid out
in memory, and the use of traits classes to provide programs with information about POOMA objects.

Block And Evaluate

POOMA tries to resolve the tension between how programmers want to express their ideas, and what runs most efficiently
on modern architectures, by delaying the evaluation of expressions until enough is known about their context to ensure that
they can be evaluated efficiently. It does this by blocking calculations into units called iterates, and putting those iterates into
aqueue of work that is still to be done. Each iterate is a portion of a computation, over a portion of adomain. POOMA
tracks data dependencies between iterates dynamically to ensure that out-of-order computation cannot occur.

Depending on the switches specified during configuration when the library isinstalled, and the version of the POOMA
library that a program is linked against, POOMA will run in one of four different modes. In the first mode, the work queue
doesn't actually exist. Instead, the single thread of execution in the program eval uates iterates as soon as they are "queued"
(i.e., work is done immediately). The result isthat all of the calculations in a statement are completed by the time execution
reaches the semi-colon at the end of that statement.

file:///E|/r2/html/tut-04.html (1 of 12) [11/1/1999 7:01:57 PM]

POOMA Tutorial 4: Further Topics

In its second mode, POOMA maintains the work queue, but all work is done by a single thread. The queue is used because
the explicit parceling up of work into iterates gives POOMA an opportunity to re-order or combine those iterates. While the
overhead of maintaining and inspecting the work queue can slow down operations on small arrays, it makes operations on
large arrays much faster.

For example, consider the four function calls that perform red/black relaxation in the second tutorial. In order to get the
highest possible performance out of the cache, all four of these expressions should be evaluated on a given cache block
before any of the expressions are evaluated for the next cache block. Managing this by hand is a nightmare, both because
cache size varies from machine to machine (even when those machines come from the same manufacturer), and because
very slight changesin the dimensions of arrays can tip them in or out of cache. POOMA's array classes and overloaded
operators do part of the job by creating appropriately-sized iterates; its work queue does the rest of the job by deciding how
best to evaluate them. The net result is higher performance for less programmer effort.

POOMA's third and fourth modes of operation are multi-threaded. Each thread in a pool takes iterates from the work queue
when and as they become available. Iterates are evaluated independently; the difference between the two modes is that oneis
synchronous and blocks after evaluating each data-parallel statement, while the other is asynchronous and permits
out-of-order execution. The table below summarizes these four modes, along with the configuration arguments used to

produce each.

1. Synchronous Serial 2. Asynchronous Serial

Conventional sequential execution | Serial work queue

--serial --parallel --sched serial Async
3. Synchronous Par allel 4, Asynchronous Parallel

Multithreaded, blocking after each | Multithreaded, out-of-order execution
data-parallel statement

--parallel --sched sync |--parallel --sched async

A very important function in POOMA's work allocation system is Poora: : bl ockAndEval uat e() . It isone of only
two functions that expose the library'sinternal parallelism and cache optimizations to users. While POOMA automatically
calsit at the right times in most cases, there are afew situations in which programmers should call it explicitly.

If evaluation has been deferred, the statements being evaluated are not guaranteed to have completed until

bl ockAndEval uat e() iscaled. POOMA doesthis by itself inside of oper at or <<, reductions, and so on, but thereis
a place where the performance overhead of doing that check would be so high as to be unacceptable: indexing with integers.
If bl ockAndEval uat e() wascaled inside every use of oper at or () , it would be impossible to write serial loops
efficiently.

This means that when a program is running in modes 2-4 (i.e., using either parallelism or potentially asynchronous
execution), it must call bl ockAndEval uat e() before subscripting arrays with integers. Failure to do so can lead to race
conditions, and other hard-to-find errors.

Typica usesof bl ockAndEval uat e() look like:
Array<2> A(N, N);
A = 0;

Poonm: : bl ockAndEval uat e() ;
A(N2, N2 =1,

or:
Loc<2> center(N 2, N 2);

Pooma: : bl ockAndEval uat e();
A(center) = 1;

Without the calls, the code might not parallelize correctly. If, however, code like the following is used instead:

I nterval <2> center(lnterval <1>(N 2, N2), Interval <1>(N2, N2));
A(center) = 1,

file:///E|/r2/html/tut-04.html (2 of 12) [11/1/1999 7:01:57 PM]

POOMA Tutorial 4: Further Topics

then correct execution is guaranteed, because this assignment will be handled using all of POOMA's parallel machinery. Of
course, the safe version is somewhat slower, and should not be used inside atime-critical loop, since it would implicitly be
doing locking and unlocking on every call.

It can be very tediousto place bl ockAndEval uat e() callsin code that mixes scalar and data-paralel statements. It is
easier and less error-prone to simply turn off asynchronous operation temporarily. Thisis accomplished by calling
Poona: : bl ocki ngExpr essi ons(true) atthebeginning of such ablock and then calling

Poona: : bl ocki ngExpr essi ons(fal se) attheend.

Small Vectors and Tensors

POOMA includes two "tiny" classes that are optimized to represent small vectors and tensors. Not surprisingly, these are
caled Vect or and Tensor ; their declarations are:

templ ate<int Size, class T = double, class EngineTag = Full>
struct Vector;
tenpl ate<int Size, class T = double, class EngineTag = Full >

struct Tensor;

The size parameters specify the fixed size(s) of the objects, and are used as follows:

Vect or <3> v; /'l 3-conponent vector of doubl es.
Vector<2, int> vi; /'l 2-conponent vector of ints.
Tensor<2, int> t; /'l 2x2 tensor of ints.

Note that these classes use engine abstractions, just like their grown-up Ar r ay counterpart. The only engine class available
for Vect or inthisreleaseisFul | , which signalsthat all elements of the vector or tensor are stored. For Tensor , in
additionto Ful | , POOMA providesAnt i symmetric,Symmetri c,and Di agonal classesto usefor the Engi neTag
parameter. The names of these classes describe their mathematical meaning. In the following table, we show the definitions
of the tensor symmetries, indexing convention, and the way the data values are stored internally in the

Tensor <Di m T, Engi neTag> classes. Note that we only store values that cannot be computed from other values, but the
user can still index non-Ful | Tensor objectsasif they had all elements stored.

EngineTag Value ’ Tensor Structure ’ (i,j) Indices ’ Array Storage of Elements
x00 x01 x02 x_mo0] x_ni3] x_ni6]

[EEN

| | {I 0,0 O 0,21 |l I
Ful | | x10 x11 x12 | (] 1,0 1,1 1,2 | (] x.nf1] x nf4] x nf7] |
| x20 x21 x22 ||| 2,0 2,1 2,2 | (] x.nf2] x n{5 x_n{8] |
| x00 x10 x20 ||| 0,0 0,1 0,2 | || x_n{O] |
Symetric | x10 x11 x21 | (] 1,0 1,1 1,2 | || x_n1] x_ni3] |
| x20 x21 x22 ||| 2,0 2,1 2,2 ||| x mM2] x nf4] x_n{5] |
| 0 -x10 -x20]| 0,0 0,1 0,2] || |
Antisymretric | x10 0 -x21 || 2,0 1,12 1,2 | || x_nO] [
| x20 x21 O ||l 2,0 2,1 2,2 ||| x_mM1] x_nf2] |
| x00 O O ||l 0,0 0,1 0,2]| x_ni0] |
Di agonal | O x11 O ||| 1,0 1,1 1,2 | | x_nf 1] |
| O 0 x22 || 2,0 2,1 2,2 | || x_nf2] |

The code below (included in the release as exanpl es/ Ti ny) isashort example of how Vect or and Tensor classes can
be used:

01 #i ncl ude "Poonma/ Arrays. h"
02

file:///E|/r2/html/tut-04.html (3 of 12) [11/1/1999 7:01:57 PM]

POOMA Tutorial 4: Further Topics

03 int main(

04 i nt argc, /1 argument count
05 char* argv|] /1 argument |ist
06){

07 // Initialize POOVA.

08 Poorm::initialize(argc, argv);

09

10 // Make an array of 100 3D ray vectors.

11 Loc<l1> patchSi ze(25);

12 Uniform&idLayout<1> |ayout (I nterval <1>(100), patchSize);
13 Array< 1, Vector<3>, MiltiPatch<Unifornirag, Bri ck> > rays(layout);
14

15 // Set the third conponent of all of the vectors to zero.
16 rays.comp(2) = 0.0;

17

18 // Starting sone scal ar code, nust bl ock

19 Poona:: bl ockAndEval uat e() ;

20

21 // Fill the vectors with a random value for the first conponent.
22 for (int i = 0; i<100; i++4)

23 {

24 rays(i)(0) = rand() / static_cast<doubl e>(RAND MAX) ;

25 }

26

27 |/ Define a unit vector pointing in the y direction

28 \Vector<3> n(0.0, 1.0, 0.0);

29

30 // Set the second component so that the length is one.

31 rays.conmp(l) = sgrt(1.0 - rays.conp(0) * rays.conp(0));
32

33 // Reflect the rays off of a plane perpendicular to the y axis.
34 rays += -2.0 * dot(rays, n) * n

35

36 // Define a diagonal tensor

37 Tensor <3, doubl e, Di agonal > xyflip2(0.0);

38 xyflip2(0,0) = -2.0;

39 xyflip2(1,1) = -2.0;

40

41 |/ Tensor-Vector dot product multiplies x and y conponents by -2.0:
42 rays = dot (xyflip2, rays);

43

44 |/ Qutput the rays.

45 std::cout << rays << std::endl

46

47 [/ Cean up and | eave.

48 Poonm::finalize();

49 return O;

50 }

Asline 13 of this code shows, programs can declare POOMA Ar r ay s with elements other than basic arithmetic types like
i nt ordoubl e. Inparticular, Vect or, Tensor, and conpl ex are explicitly supported. Please contact
pooma@acl.lanl.gov for information on using other, more complicated types.

TheArray: : conp() method used on line 16 does component forwarding. The expressionr ays. conp(2) returnsan
Ar r ay<doubl e> that supports writing into the second component of each vector element of rays. Thisis a data-parallel
statement that works in away analogous to the loop at lines 22-25, except that the POOMA evaluator will calcul ate patches
in parallel. Thus, if aprogram had an array of tensors T, it could change the element in the Oth row, 1st column with
T.conmp(0, 1).Notethat, unlike Arr ay, both Vect or and Tensor awaysindex from zero.

file:///E|/r2/html/tut-04.html (4 of 12) [11/1/1999 7:01:57 PM]

mailto:pooma@acl.lanl.gov

POOMA Tutorial 4: Further Topics

Line 24 shows that, as expected, the ith component of aVect or V can be accessed for both reading and writing using the
syntax V(i) ; Tensor element access requires two subscripts. Thus, the first subscript in the expressionr ays(i) (0)
returns the ith element of the Vect or r ays, while the second subscript returns the zeroth component of that vector.
Component forwarding isintimately related to the notion of component views, which are discussed below.

Line 28 shows that Vect or s can beinitialized with Si ze element values. Similarly, instances of Tensor can be
initialized with Si ze* Si ze element values.

The data-paralel expression on line 31 shows that the usual math functions can be applied to entire arrays. The unary and
binary functions supported are:

acos asin atan ceil cos cosh

exp fabs floor |og | 0g10 sin

sinh sqgrt tan tanh imag real

abs arg nor m-

| dexp pow fnod atan2 dot2 polar3

1. conpl ex<T> only

2. Vect or and Tensor only

3. conpl ex<T> only

Line 34 isadata-parallel expression on vectors. In addition to dot product, the normal arithmetic functions involving

Vect or and Tensor are supported (see the note on tensor accumulators below for exceptions), as are the following named

functions on vectors and tensors:
norm(Vector<D, T, B> &v):

Returns ascalar of type T, equal tosqrt (dot (v, Vv)).
norn2(Vector<D, T, E> &v):

Returns ascalar of type T, equal todot (v, V).
trace(Tensor<D, T, E> &t):

Returns ascalar of type T, equal to the trace of the tensor t (sum of diagonal elements).
det (Tensor<D, T, E> &t):

Returns ascalar of type T, equal to the determinant of the tensor t .
transpose(Tensor<D, T, E> &t):

Returns atensor of type Tensor <D, T, E>, equal to the transpose of the tensor (element (i,j) of the transposeis equal

to element (j,i) of the input tensor t .

t enpl at e<cl ass Qut put Engi neTag, int D, class T, class Engi neTag>
Tensor <D, T, Qut put Engi neTag> &ymetri ze(Tensor<D, T, E> &t):

Returns atensor of type Tensor <D, T, E>, applying an appropriate symmetrizing operation to convert from the

symmetry of theinput Engi neTag (for example, Ful |) to the symmetry of the Qut put Engi neTag (for example,

Ant i symmet ri c. Thisisinvoked using explicit template instantiation for the desired Qut put Engi neTag. For
example:

Tensor >2, doubl e, Ful Il > t (1.0, 2.0, 3.0, 4.0);
Tensor >2, doubl e, Anti symretric> at = symetri ze<Antisymretric>(t);

std::cout << " t =" <<t << std::endl;
std::cout << "at =" << at << std::endl;
produces the output:
t=((13)(24))
a=((005)(-050))

dot (Vector &, Tensor&):
ReturnsaVect or viamatrix-vector product of the arguments.
dot (Tensor &, Vector&):

file:///E|/r2/html/tut-04.html (5 of 12) [11/1/1999 7:01:58 PM]

POOMA Tutorial 4: Further Topics

ReturnsaVect or viamatrix-vector product of the arguments.
dot (Tensor & Tensor &) :
ReturnsaTensor viamatrix-matrix product of the two arguments.
out er Product (Vector &, Vector&):
ReturnsaTensor (with Engi neTag=Ful |) via outer (tensor) product of the arguments.
These functions also operate on Ar r ays of Tensor and Vect or elements (and Dynam cArr ays, and Fi el ds))

Lines 37-39 show construction of a diagonal tensor using the Tensor classwith Di agonal for the Engi neTag
parameter; line 37 constructsit with al (diagonal) values equal to 0.0, then lines 38 and 39 assign the first two elements
along the diagonal to -2.0. Line 42 illustrates the Tensor -Vect or dot product, returning aVect or .

This release of POOMA does not offer double-dot products, cross products or any other vector or tensor operations; these
are being considered for future rel eases.

Finally, asline 45 shows, arrays of vectors can be output like arrays of any other type.

A Note on Tensor Accumulators

Accumulation operators such asoper at or *=() actingon Tensor <D, T, Engi neTag> may resultinaTensor having
different symmetry (different Engi neTag than what you are accumul ating into. For example,

Tensor <2, doubl e, Antisymretric> tl, t2;

/1 ... assign val ues

tl *= 12
isincorrect, because the result of multiplying the two antisymmetric tensors would be a symmetric tensor, whose value is
impossible to store in the left-hand-side object t 1, which is an antisymmetric tensor. For this reason, the only accumulation
operators currently defined for Tensor typesareoper at or +=() and oper at or - =() , which do not change the
symmetry. A consequence of thisisthat the only reduction operator acting on Ar r aysof Tensor elementswhich worksis
thesumn() reduction.

Using Multiple Patches

Our next Laplace equation solver usesthe classMul t i Pat ch to help POOMA take advantage of whatever parallelismis
available. An array withaMul t i Pat ch engine breaks the total domain into a series of blocks. Such an array is defined as
follows:

/] Define the total donmain.
I nt erval <2> total Domai n(100, 100);

/1 Define the sizes of the patches (in this case 10x10).
Loc<2> pat ches(10, 10);

/[l Create a UniforntxidLayout.
Uni for m&ri dLayout <2> | ayout (t ot al Dormai n, patches);

/1l Create the array containing 100 Brick patches, each 10x10.
Array< 2, double, MuiltiPatch<Uniforniag, Bri ck> > A(layout);

Thel nt er val declaration specifies the total logical domain of the array being created. The 10x10 Loc isthen used in the
Uni f or mGri dLayout declaration to specify that the total domain isto be managed using atotal of 100 patches. When
the Arr ay a isfinaly declared, Ar r ay'sthird template parameter is explicitly instantiated using Mul t i Pat ch, and the
layout object | ayout isused as a constructor parameter.

Once dll of this has been done, A can be used like any other array. However, if adata-parallel expression uses multi-patch
arrays, POOMA's evaluator automatically computes values for the patches in parallel. This means that the relaxation
program shown below (included in the release as exanpl es/ Sol ver s/ UMPJacobi) would be able to take full
advantage of multiple processors, if the machine it was being run on had them, but would be equally efficient on a

file:///E|/r2/html/tut-04.html (6 of 12) [11/1/1999 7:01:58 PM]

POOMA Tutorial 4: Further Topics

conventional uniprocessor:

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

#i ncl ude "Pooma/ Arrays. h"
#i ncl ude <i ostreane
const int N= 18; // The size of each side of the domain.
tenpl at e<cl ass T1, class El, class T2, class E2>
voi d
Appl yJacobi (
const Array<2, T1, El1> &YV, /Il to be rel axed
const ConstArray<2, T2, E2> & b, // fixed term
const Range<2> & 1J // region of calculation
){
V(1J) =0.25 * (V(1J+Loc<2>(1,0)) + V(IJ+Loc<2>(-1,0)) +
V(1J+Loc<2>(0,1)) + V(I1J+Loc<2>(0,-1)) - b(1J));
}
tenpl at e<cl ass T1, class E1>
voi d
Appl yPeri odi ¢(
const Array<2, T1, El1> &V /] to be wapped
){
/1 Get the horizontal and vertical extents of the domain.
Interval <1> 1 = V.donmain()[O0],
J = V.domain()[1];
/1 Copy each of the four slices in turn.
V(I.first(), J) = V(l.last()-1, J);
V(I.last(), J) = V(I.first()+1,7J);
V(I, J.first()) = V(I, J.last()-1);
V(I, J.last()) = V(I, J.first()+1);
}
int main(
i nt argc, /1 argunment count
char * argv|] /1 argunment vector
){
/1 Initialize POOVA
Pooma: :initialize(argc, argv);
/! The domain with guard cells on the boundary.
I nt erval <2> guarded(Interval <1>(0, N+1), Interval <1>(0, N+1));
/1l Create the |ayouts.
Uni f or mxr i dLayout <2> guar dedLayout (guarded, Loc<2>(4, 4));
/1l The array we'll be solving for.
Array<2, double, MiltiPatch<Unifornirag, Brick> > V(guardedLayout);
V = 0.0;
/1 The right hand side of the equation.
Array<2, double, MiltiPatch<Unifornirag, Bri ck> > b(guardedLayout);
b =0.0;
/1 Must block since we're doing sone scalar code here (see Tutorial

file:///E|/r2/html/tut-04.html (7 of 12) [11/1/1999 7:01:58 PM]

4).

POOMA Tutorial 4: Further Topics

56 Poora: : bl ockAndEval uat e() ;

57 b(3*N 4, N4) = -1.0;

58 b(N4, 3*N4) = 1.0;

59

60 /1 The interior domain, now with stride 2.
61 Range<2> | J(Range<l1>(1, N1, 2), Range<1>(1l, N1, 2));
62

63 /1 lterate 200 tines.

64 for (int i=0; i<200; ++i)

65 {

66 Appl yJacobi (V, b, 1J);

67 Appl yJacobi (V, b, 1J+Loc<2>(1,1));
68 Appl yJacobi (V, b, 1J+Loc<2>(1,0));
69 Appl yJacobi (V, b, 1J+Loc<2>(0,1));
70 Appl yPeri odi c(V);

71 }

72

73 /1 Print out the result.

74 std::cout << V << std::endl;

75

76 /1l Clean up and report success.

77 Poona: : finalize();

78 return O;

79 }

A program can go one step further, and take advantage of the fact that Mul t i Pat ch isitself templated. The first template
parameter, Layout Tag, specifies the type of domain decomposition that is done. If Uni f or niTag is specified, then al of
the blocks are assumed to have the same size. If Gri dTag is specified, then the domain decomposition can consist of an
array of non-uniform blocks, till arranged in aDi mdimensional grid (see

exanpl es/ Sol ver s/ GvPQuar dedJacobi). Future releases will include atile-layout that can cover the domain with
blocks that are not necessarily arranged on a grid.

The second template parameter specifies the type of Engi ne used in the patches. If Mul ti Pat ch<Uni f or nirag,

Conpr essi bl eBri ck> isused as atemplate parameter in an Ar r ay declaration, then POOMA will not actualy alocate
memory for apatch if al of the valuesin that patch are known to be the same. For example, if awave propagation program
initializes all but afew array elementsto zero, then the patches whose elements are all zero will be expanded automatically
on demand. This can save significant execution timein the early stages of such calculations.

Note that POOMA can deal with Mul t i Pat ch arrays having different layouts. However, best performance is obtained
when all layoutsin an expression are the same (though some may have guard layers, as discussed in the following section).

Another variation on this program that uses threads explicitly is presented in the appendix. This program is more complex
than the one above, but also has tighter control over what happens and when it happens.

Guard Layers

Multipatch arrays do present a complication to the evaluation of expressions. Evaluation of stencils such as those involved in
the Jacobi iteration becomes tricky near the edge of a patch since data will be reguire from a neighboring patch. Thisis
handled by evaluating the strips near the edge separately from the bulk of the patch. Asthe overhead for evaluating a patch
isroughly constant, small sub-patch evaluations hurt efficiency.

One mechanism for fixing this problem isto introduce guard (or ghost) layers. This done by having the individual patches
overlap sightly. Each patch still "owns' the same data as before, but surrounds that data with a layer of guards. These
guards duplicate data that is owned by other patches, and can only be read from, not written. Now the evaluator can be
written as asingle loop over the entire owned portion of the patch, with the stencil terms reading from the guard layers.
POOMA takes care of keeping the datain the guard layersin sync with the neighboring patches.

The guards described above are known as internal guards. POOMA also supports the notion of external guards. For Ar r ay
objects, external guards are ssimply syntactic sugar for declaring alayer of cells around the domain of interest. POOMA

file:///E|/r2/html/tut-04.html (8 of 12) [11/1/1999 7:01:58 PM]

POOMA Tutorial 4: Further Topics

Fi el d objects hide the external guards and use them to cal culate boundary conditions.
One can modify the Jacobi example simply by passing two Guar dLayer s objectsto the layout constructor, one specifying
the internal guards and another specifying the external guards:

/1 Specify the internal guards
GuardLayers<2> igls(1);

/1 Specify no external guards
Guar dLayer s<2> egl s(0);

/1 Define the nunmber of the patches.
Loc<2> patches(4, 4);

/]l Create a Uniform&idLayout with internal guards.
Uni f or m&r i dLayout <2> guar dedLayout (guarded, patches, igls, egls);

Complete examples using guard cells are presented in the UMPGuar dedJacobi and GVPGuar dedJacobi examplesin
exanpl es/ Sol vers.

POOMA can support different guard layers for each axis, and for both the high and low faces along each axis. These are
specified by initializing the Guar dLayer s object with two raw i nt arrays, such as:

int lower[]
i nt upper[]

{2, 0, 11},
{0 O, 11,

GuardLayers<3> internal (I ower, upper);

This code fragment initialize i nt er nal to have asingle guard layer on the lower side of the first dimension, and one on
each the upper and lower sides of the third dimension.

Taking Layout Into Account

We now examine how to construct a loop-based reduction engine that takes into account some of the different ways
POOMA arrays can belaid out in memory. Some aspects of this example are left unexplained, or glossed over, since the
main intent of this exampleisto show how intermediate or advanced users of the library can tailor it to their needs.

The most common array layout in POOMA is called a brick layout, and is signaled by the use of the classBr i ck asan
engine specifier in template instantiation. Conceptually, abrick isadense, rectangular patch of multi-dimensional space,
such as the area [0..10]x[0..10]. Programs written by the typical user access the elements of bricks using nested loops, the
indices of which sweep through the brick's extent along a particular axis. Programs written by POOMA''s devel opers use
more complicated access loops in order to take full advantage of cache behavior.

Thethree functionsaccunul at eW t hLoop() defined below are the guts of the general -purpose adding routine that we
will build up in this example. Each routine loops over the axes of an array of different dimension; the C++ compiler knows
which version of the overloaded function to instantiate by pattern-matching the actual dimension of the array being summed
with the dimension value specified as the first argument to Const Arr ay (i.e., 1, 2 or 3). Thereal version of this code has
seven versions of accunul at eW t hLoop() , since POOMA arrays can have up to seven dimensions. Note that these
functions have to be written explicitly, since there is no way in C++ to create entirely new statements (such as new nested
loops) through template expansion.

tenpl ate<class T, class E>
inline T accumnul at eW t hLoop(

const ConstArray<l, T, E>& X
) {

T sum = 0O;

int fO = x.first(0), 10 = x.last(0);
for (int i0=f0; i0<=l0; ++i0)

file:///E|/r2/html/tut-04.html (9 of 12) [11/1/1999 7:01:58 PM]

POOMA Tutorial 4: Further Topics

sum += x(i0);
return sum

}

tenpl ate<class T, class E>
inline T accurul at eWt hLoop(
const ConstArray<2, T, BE>& x

){
T sum = 0;
int fO = x.first(0), f1 = x.first(1);
int 10 =x.last(0), 11 = x.last(1);

for (int i1=f1; il<=l1; ++i1l)
for (int i0=f0; 10<=l0; ++i0)
sum += x(i0, i1l);
return sum

}

tenpl ate<class T, class E>
inline T accurul at eWt hLoop(
const Const Array<3, T, E>& x

){
T sum = 0;
int fO = x.first(0), f1 = x.first(1), f2 = x.first(2);
int 10 =x.last(0), |1 =x.last(l), 12 = x.last(2);

for (int i2=f2; i2<=12; ++i2)
for (int i1=f1; il<=l1; ++i1l)
for (int i0=f0; i0<=l0; ++i0)
sum += x(i 0, i1, i2);
return sum

}

The next step isto write four versions of the interface function that will actually be called by users. These four functions
appear the same from a user's point of view (i.e., the syntax that a programmer types in to invoke these functionsis
indistinguishable). The first version uses explicit specialization to pattern-match arrays that have actual Br i ck engines.

tenplate<int D, class T>
T accunul at e(

const Const Array<D, T, Bri ck>& x
) {

return accumnul at eWt hLoop(x);
}

Thisfunction just calls through to whichever version of accumul at eW t hLoop() handles arrays of dimension D. Since
accunul at eWt hLoop() isani nl i ne function, this one extrafunction call will be eliminated by the compiler when
this code is optimized.

The second version of this function handles arrays whose engines are Br i ckVi ews, rather than Br i cks. Recall that a

Bri ckVi ewisan aliasfor asubset of the elementsin an actual Br i ck. Thetemplate classBr i ckVi ewtakes a dimension
and a Boolean as template arguments; the Boolean specifies whether the Br i ckVi ew can assume a unit stride along its first
dimension. Taking aview of aBr i ck leadsto this parameter being true; otherwise, it isfalse.

tenplate<int D1, class T, int D2, bool S>
T accunul at e(
const ConstArray< D1, T, BrickViewD2, S> >& x

)

return accunmul at eWt hLoop(x);
}

file:///E|/r2/html/tut-04.html (10 of 12) [11/1/1999 7:01:58 PM]

POOMA Tutorial 4: Further Topics

Thethird version of accurul at e() isthe one that makes this example interesting:

tenmplate<int D, class T>
T accunul at e(
const ConstArray< D, T, MiltiPatch<UniforniTag, Bri ck> >& x
){
typenanme UnifornGridLayout <2>::iterator
i = x.nmessage(Get Gi dLayout Tag<2>()) . begin(),
e = X.nessage(Get &i dLayout Tag<2>()).end();

T sum = 0O;
while (i !'=e)
{

sum += accumul ate(x(*i));
++i ;
}

return sum

}

Instances of the class Uni f or m&r i dLayout store information about the patches that make up a uniform multi-patch.
(They do other things as well; please see the POOMA documentation for the full list.) The first three lines of the function
shown above declare apair of iterators, which the function then uses to iterate through the patches of the array. The
expression x(*i) accesses asingle patch; this patch is then passed to whichever version of accurrul at e() isappropriate
for patches of that kind.

Our final version of accumnul at e() existsto ensurethat arrays using other storage mechanisms can still be summed.
When the C++ compiler expands templates, it takes a more-specific match in preference to aless-specific match. Thus, since
cl ass E(i.e, aclassvariable) isused asthe third parameter in the template parameter list below, instead of a concrete
engine tag class such as Br i ck, the compiler will only choose thisversion of accurrul at e() when no other version will
do:

tenplate<int D, class T, class E>
T accunul at e(

const Const Array<D, T, E>& x
){

return accumnul at eWt hLoop(x);
}

It isimportant to note that if the specialized versions of accumul at e() had not been defined, this generic version would
return the correct answer for any kind of array storage, including Mul t i Pat ch. The only advantage of looping over
patches explicitly isthat it yields better cache usage, and hence higher performance, since patch sizes are usually chosen so
that the whole of each patch will fit into cache at once. POOMA therefore allows programmers to make sure that their code
isworking correctly before they start tuning it, and to tune programs incrementally based on the results of profiling.

For an example of aprogram that usesideas like these, but manages threads explicitly, see the appendix.

Component Views

It is often useful to create an array of a structured type, such asaVect or <3>, and then select aview consisting of
corresponding elements of that type, such as the Z component of the position that each Vect or <3> represents. Such
component views are closely related conceptually to the component forwarding introduced earlier. POOMA allows programs
to create such views where the array typeisitself a POOMA type. For example, suppose a program contains the following
statements:

Array<2, Vector<3> > a(10, 10);
Array<2> b(10, 10):
b = a.conmp(2);

The right-hand side of the assignment statement is aview of the third components of all of a's vector elements. Thisis

file:///E|/r2/html/tut-04.html (11 of 12) [11/1/1999 7:01:58 PM]

POOMA Tutorial 4: Further Topics

implemented as an Ar r ay whose engine is a component forwarding engine. Datais only accessed on demand: the
expression a. conp(2) doesnot copy values out of a into temporary storage.

If the source array of a component view iswritable (i.e. not aConst Ar r ay), then that component view can appear on
either side of the assignment operator. For example:

Interval <1> | (5);

a(2, 1I).conmp(1l) = 3.14;
sets the second component of al of the vector elementsin the slice to 3.14. The class Corrponent Vi ew can also be used to
make an object to store the view, asin:

Conponent Vi ew<Loc<1>, Array<2, Vector<3> > > va = a.conp(1l);

Here, the argument "L oc<1>" indicates that the component is singly-indexed. Up to 7 indices are supported, since programs
can make Ar r ayswith Ar r ay elements.

Summary

POOMA doesits best to insulate programmers from the details of parallelism and modern memory hierarchies, but
eventually these issues must be dealt with if high performance is to be achieved. Thistutorial has therefore introduced some
of the characteristics and capabilities of the POOMA library which developers must take into account in order to get the best
possible performance from modern parallel computers, and some of the techniques (such as traits classes) which are used to
implement the library.

[Prev] [Home] [Next]
Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/tut-04.html (12 of 12) [11/1/1999 7:01:58 PM]

file:///E|/r2/html/tut-05.html
http://www.acl.lanl.gov/pooma/

POOMA Tutorial 6: Indirect Addressing

Parallel"Object-Oriented
Methods.and Applications™

POOMA Tutorial 6
Indirect Addressing

Contents:
Introduction
Notation

Example
Summary

Introduction

Indirect addressing is afundamental operation in many numerical and scientific algorithms. Instead of accessing array elements
with loop indices directly, indirect addressing uses the element of one array (sometimes called an index table or indirection table) as
indices for another array. These index tables can store either static information (such as the neighbors of pointsin an unstructured
mesh), or dynamic information (such as the sorting order of the elements in a vector).

Thistutorial shows how to perform indirect addressing in POOMA, and discusses some of the subtleties and complexities that arise
when indirection and multithreading are combined.

Notation
Suppose that the array X contains the following values:
Apff
while the array J contains:
3Pz
A program could re-order the elements of X while copying them into another array Y using the following loop:
for (int i=0; i<4; ++i)

Y = X(3(i));

The effect of thiswould beto fill Y with the following values:
AP

POOMA alows this operation to be expressed more economically, smply by using the array J as a subscript on the array X
directly:

Y = X(J);

Indirect addressing on the source side of an assignment is sometimes called "pull" addressing, since the index array's values are
being used to "pull" values from the source into the destination. POOMA also supports "push” addressing, in which the index array
is used on the destination side of the assignment. The syntax for thisis simply:

Y(J) = X

file:///E|/r2/html/tut-06.html (1 of 5) [11/1/1999 7:02:02 PM]

POOMA Tutorial 6: Indirect Addressing

which is equivalent to the loop:
for (int i=0; i<4; ++i)

Y(I(i)) =X

This operation would fill Y with:
Blefaf

So long as J isastrict permutation of the indices 0...N-1, thiswill have the same effect as the loop shown above. The effects of this
statement if J has repeated or missing elements are discussed in the next section.

One-dimensional arrays of integers can be used as subscripts to one-dimensional arrays of any other type, but how are
multi-dimensional arrays to be subscripted? In POOMA, the answer is to use arrays whose elements are of typeLoc. An

Ar ray<Loc<2>>, for example, can be used to re-order the elements of atwo-dimensional array, since each element of the index
array can act as a coordinate in the dataarray. Similarly, an Ar r ay<Loc<3>> can be used to subscript a 3-dimensional array of
any type. Future releases of POOMA will support higher-dimensional indirect addressing as well.

Indirect addressing is a very powerful tool, but must be used carefully. The most important consideration is that the order of data
movement during indirection is not defined. If indirection is performed using an index table that sends many valuesto asingle
location, for example, then there is no way to predict which of those values will be written into that location.

However, indirect addressing can always be used to read values safely, and to thereby perform a scatter operation. Suppose a source
array S containsthevalues[3. 14, 2. 71],whileanindex array | A contains the values[0,1,0,0,1,1]. The expression S(| A)
yields:

[3.14, 2.71, 3.14, 3.14, 2.71, 2.71]

and can always be used safely on the right-hand side of an expression. This works because the domain of a(b) isthe domain of b.
Inexpressionslikea(b) = c,thedomainsof ¢ and b have to match, but the domain of a can be arbitrary.

Example

The example for thistutorial isa 1-dimensional Fast Fourier Transform (FFT) that shuffles data using indirect addressing. This FFT
implementation is not efficient---it recal cul ates trigonometric constants repeatedly, for example, rather than pre-calculating and
storing them---but it does illustrate the power of indirection.

The source for thisexampleisincluded in therelease in the file exanpl es/ | ndi r ecti on/ FFT/ FFT. cpp. The main body of
this program initializes POOMA, creates and fills an array of complex values, transformsiit, and prints the result of that transform,
as shown below:

138 int main(int argc, char* argv[])

139 {

140 Poorme: :initialize(argc, argv);
141

142 int size = 16;

143

144 Array<l, conpl ex<doubl e>, Brick> a(size);
145

146 int i;

147 for (i =0; i < size; ++i)

148 {

149 a(i) = sin(4*i*Pi/size);

150 }

151

152 std::cout << a << std::endl;
153

154 fft(a);

155

156 std::cout << a << std::endl;

file:///E|/r2/html/tut-06.html (2 of 5) [11/1/1999 7:02:02 PM]

POOMA Tutorial 6: Indirect Addressing

157

158 Pooma: : finalize();
159 return O;

160 }

The key statement ison line 154, wherethef f t () function isinvoked. The program contains two overloaded versions of this
function. Thefirst version, shown below, determines the level of the FFT (i.e. the number of recursive steps the calculation
requires), then invokes the second version, which actually performs the calculations. (Note that in this simple example, the input
array's length is required to be a power of two. Also, Pi isdefinedasast ati ¢ const doubl e equal to the value of pi
computed from the expression acos(- 1. 0) because some compilers do not define mathematical constants such asM Pl inthe
<math.h> header file.)

117 wvoid fft(const Array<l, conplex<double>, Brick> &array)

118 {

119 int size = array.domain().size();
120

121 /1 Determ ne size as power of 2
122 int level = -1;

123 while (size > 1)

124 {

125 PAssert (! (size & 1));

126 ++l evel ;

127 size /= 2;

128 }

129

130 if (level >= 0)

131 fft(array, level);

132 }

The second version of f f t () doesthe real number-crunching. If the computation has reached itsfinal stage, odd and even
elements are combined directly (lines 106-111). If the computation is still recursing, the elements are shuffled, a half-sized
transform is applied on each subsection, and the results are combined (lines 100-102). All of these operations use indirect
addressing to move data values around. Most of the rest of the program can be viewed as infrastructure needed to make this data
movement simple and efficient.

083 wvoid fft(const Array<l, conpl ex<doubl e>, Bri ck> &array, int |evel)

084 {

085 I nterval <1> domain = array. domain();

086

087 if (level > 0)

088 {

089 Const Array<1, int, | ndexFunct i on<Lef t Map> > | ef t (domai n);
090 Const Array<1, int, | ndexFunct i on<Ri ght Map> > ri ght (donmai n);
091 Const Array<1, int, I ndexFunct i on<Shuf f| eMap> > shuffl e(domai n);
092 Const Array<1, conpl ex<doubl e>, | ndexFunction<TrigFactor> > trig(domain);
093

094 | ef t.engine().setFunctor(LeftMp(level));

095 ri ght.engi ne(). set Funct or (R ght Map(l evel));

096 shuffl e. engi ne() . set Funct or (Shuf f | eMap(l evel));

097 trig.engine().setFunctor(TrigFactor(level));

098

099 /1 Shuffle val ues, conpute n/2 length ffts, conbine results.

100 array = array(shuffle);

101 fft(array, level-1);

102 array = array(left) + trig*array(right);

103 }

104 el se

105 {

106 int size = domain.size();

107 Range<l> left (0, size-2, 2),

108 right(1l, size-1, 2);

file:///E|/r2/html/tut-06.html (3 of 5) [11/1/1999 7:02:02 PM]

POOMA Tutorial 6: Indirect Addressing

109

110 array(left) += array(right);

111 array(right) = array(left) - 2.0 * array(right);
112 }

113 }

The shuffling step on line 100 uses an indirection array called shuf f | e to pull valuesinto the right positions. This array, which is
declared on line 91, isaConst Ar r ay of integers. Instead of storing the values, however, the array calculates them on the fly using
an | ndexFunct i on engine, which is bound to the array on line 96. Thel ndexFunct i on engine works as one would expect:
having been speciaized with a user-defined class with an overloaded oper at or () , the engine transforms an index i into some
new value by calling that oper at or () . Inthis case, the specializing classis Shuf f | eMap, which is shown below:

003 struct ShuffleMap

004 {

005 Shuffl eMap(int n = 0)

006 . degree_m(n)

007 {

008 nbit m=1 << n;

009 maskl m= nbit _m- 1;

010 mask2_m = ~(nbit_m| maskl_n);
011 }

012

013 int operator()(int i) const

014 {

015 return

016 (mask2_m & i)

017 | ((mskl.m&i) << 1)
018 | ((nbit_m&i) ?21: 0);
019 }

020

021 int nbit_m maskl_m mask2_m degree_m
022 };

Similar engines are used to select and combine elements of the arrays after the sub-FFTs have been performed. These use the
overloaded oper at or () intheclassesLef t Map and Ri ght Map, shown below:

029 struct LeftMp

030 {

031 Left Map(int n = 0)
032 D nbit_m~(1 << n))
033 {1}

034

035 int operator()(int i) const
036 {

037 return (nbit m&i);
038 }

039

040 int nbit_m

041 };

042

043 struct RightMap

044 {

045 Ri ght Map(int n = 0)
046 : nbit_m1 << n)
047 {1}

048

049 int operator()(int i) const
050 {

051 return (nbit_m| i);
052 }

053

file:///E|/r2/html/tut-06.html (4 of 5) [11/1/1999 7:02:02 PM]

POOMA Tutorial 6: Indirect Addressing

054 int nbit_m
055 };

Finally, an1 ndexFunct i on engineis also used to calculate the trigonometric weights used in combining. This
I ndexFunct i on isan extreme example of trading time for space: it does not store anything, but repeatedly recal culates factors
on demand.

065 struct TrigFactor

066 {
067 TrigFactor(int n = 0)
068 o n_m1l << n)
069 {}
070
071 conpl ex<doubl e> operator()(int i) const
072 {
073 return conpl ex<doubl e>(cos(Pi*i/n_m, sin(Pi*i/n_m);
074 }
075
076 int n_m
077 };
Summary

Efficient support for indirect addressing---the use of the valuesin one array to change the way another array's elements are
accessed---is one of the features that characterizes full-strength numerical libraries. This release of POOMA supports indirect
addressing in both "push" and "pull" modes using conventional data-parallel syntax, without compromising the performance of
regular index operations.

[Prev] [Home] [Next]

Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/tut-06.html (5 of 5) [11/1/1999 7:02:02 PM]

file:///E|/r2/html/tut-05.html
http://www.acl.lanl.gov/pooma/

POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields

Parallel Object-Oriented
Methods.and Applications™

POOMA Tutorial 7
Meshes, Centerings, Geometries, and Fields

Contents:
Introduction
Overview
Mesh
Centering
A Note on Allocation
Geometry
A Note on Positions
Field
A Note on Allocation
Example: One-Dimensional Scalar Advection
Example: N-Dimensional Scalar Advection

Summary

Introduction

Asmentioned in an earlier tutorial, POOMA provides classes that know enough about their own spatia structure to manage stencil
operations and the like automatically. The most important of these classes, Fi el d, isthe main subject of thistutorial. In order to
understand how discrete Fi el dsare built and used, however, it is necessary to understand how meshes are represented, what a
centering is, and how Di scr et eGeonet ry and related classes are used. After a quick overview of how these conceptstie
together, thistutorial therefore describes POOMA's mesh abstraction, then its representation of centerings, then its geometry
abstraction, and finally how the two are tied together by Fi el d.

Overview

An array is amulti-element data structure, each of whose elements is specified by one or moreindices. An array'sindices don't
mean anything in and of themselves; their only purpose isto order the array's elements.

A field, on the other hand, defines a set of values on aregion of space. Aswith an array, the indices used to access afield's elements
specify ordering and adjacency. Unlike an array's indices, however, afield'sindices also have meaning: thereis no "place’
corresponding to element (2,2) of an array (except in avery abstract sense), but the third element of the third row of afield has
some definite position in space.

In order to specify afield, alibrary such as POOMA must specify the locations at which the field's values are defined, and describe
what happens at the boundaries of that region in space. Thefirst of these tasksis handled in POOMA by geometry classes, which
are used as template parametersto the Fi el d class. This release of POOMA only provides geometry classes for discrete Fi el ds;
geometry classes capable of representing continuous Fi el ds may be included in future releases. This release of POOMA further
restricts all of its predefined geometry classes to represent discrete sets of points defined relative to a mesh, which is a set of
connected points that spans a region of space. Meshes are discussed in the next section.

In addition to amesh type, the geometry classes are parameterized by a centering type which describes the relationship of the
geometry's points to the mesh. As discussed below, the points' locations relative to the mesh can, for example, be the mesh vertices,
the cell centers, the face centers, or the edge centers. POOMA provides several classes to represent the mesh abstraction, severa
classes to represent the centering abstraction, and aDi scr et eGeonet r y<Cent er i ng, Mesh> class which combines these to
represent geometries. These are al described in detail later.

file:///E|/r2/html/tut-07.html (1 of 16) [11/1/1999 7:02:11 PM]

file:///E|/r2/tut-05.html

POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields

The second task of fields---describing what happens at the boundaries of aregion of space---is handled in POOMA by boundary
condition classes. So far, POOMA provides only predefined boundary condition classes for discrete Fields centered relative to
logically rectilinear meshes. Various kinds of reflecting, constant, extrapolating, and periodic boundary conditions are supported.

Geometry and boundary-condition classes support the application-level Fi el d class, which represents the field abstraction. Like an
Array, aFi el d can be used in data-parallel expressions, subscripted with scalar indices and domains of various shapes and sizes,
and so on. However, Fi el dsaso have an understanding of the spatial locations of their values, and of their boundary conditions.
For example, the spatial locations of aFi el d's elements can be accessed using the member function Fi el d: : x() .

Mesh

A mesh isadiscrete domain (i.e. adiscrete set of pointsin coordinate space) and some kind of connectivity rule. This rule specifies
which pointsin the mesh are connected to which others to form edges. In turn, sets of edges define faces, and sets of faces specify
the boundaries of zones or cellsin space.

POOMA contains a set of related classes to represent meshes. The classesin this release represent meshes which are logically
rectilinear. They are not necessarily physically rectilinear because they support curvilinear as well as Cartesian coordinates.
However, the template arguments, constructor parameters, and accessor methods of these classes allow for future releasesto
provide more general meshes, such as unstructured meshes with heterogeneous zones.

Like most POOMA classes, meshes can be constructed and initialized in two ways. The first technique is to pass parametersto a
constructor to initialize the mesh's characteristics. The second isto construct the mesh using its default constructor, and then call its
initialize() method with the parameters that would have been passed to a more complex constructor. (This second technique
istypically used when allocating arrays of meshes.) All of POOMA's mesh classes provide amethod calledi ni ti al i zed(),
which only returnst r ue if the object has been fully initialized.

Uni f or mRect i | i near Mesh isthe simplest of POOMA's mesh classes. It represents aregion of space that is divided at regular
intervals along each axis (although the spacing along different axes may be different). In the 3-dimensional case, for example, the
facesof aUni f or mRect i | i near Mesh are rectangles. Each zone is ablock with six faces, and is dxx dyx dzin size, where dx,
dy, and dz are the spacings along the mesh's three axes.

TheRecti | i near Mesh classgeneralizes Uni f or mRect i | i near Mesh by allowing the spacingsto vary along each axis.
Thiskind of mesh is sometimes called a Cartesian-product or tensor-product mesh. The divisions along each axis ai are defined by a
set of intervals dal = {dal(, daly, ..., dal\} (so that thejth interval on axisi has width dal;). The whole mesh is then defined by the

outer product da®x dalx...xdaR1 (where Ris the rank of the mesh, i.e. the number of dimensionsit has).

The template parametersfor Rect i | i near Mesh and Uni f or nRect i | i near Mesh areidentical, and both support the same
basic set of constructors. The main difference between the two classes from a user's point of view is the extra constructors that
Recti | i near Mesh provides. For clarity's sake, only the the two-dimensiona constructors are shown below. Both classes define
constructors which specify defaults for the origin and spacing; more constructors may be added in future rel eases.

tenpl ate<int Dim
cl ass Coordi nat eSystem = Cart esi an<Di np,
class T = POOVA DEFAULT_PCSI TI ON_TYPE>
class UnifornRectilinearMesh

{
t enpl at e<cl ass Doml, cl ass Don2>
Uni fornRecti | i near Mesh(const Doml &d1,
const Don? &d2,
Poi nt Type_t ori gin,
Poi nt Type_t spaci ngs)
{
constructor body
}
rest of class
I

tenpl ate<int Dim
cl ass Coordi nateSystem = Cartesi an<Di np,
class T = POOVA DEFAULT_PCSI TI ON_TYPE>

file:///E|/r2/html/tut-07.html (2 of 16) [11/1/1999 7:02:11 PM]

POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields

class Rectilinear Mesh

{
tenpl at e<cl ass Doml, class DonR, class Engi neTag>
Rectili near Mesh(const Doml &d1,
const Don? &d2,
const Point Type_t &origin,
const Vector<Dim Array<l, T, EngineTag > > &spacings,
const Vector<2*Dim MeshBC &nbc)
{
constructor body
}
rest of class
b

The Dom arguments to the constructors must be domains, and serve the same purpose as the domain constructor arguments used by
the Ar r ay class. Only one argument is needed if that argument isa Di mdimensional domain suchasan| nt er val <Di np.
However, unlike Ar r ay's, the domain must be zero-based, i.e. the origin of itsindex space must be [0,0,...0]. (This requirement
may be relaxed in future versions of POOMA.) The spatial origin of each type of grid is specified by the constructor'sor i gi n
parameter. Uni f or nRect i | i near Mesh then takes another point, spaci ngs, whose values specify the spacings along each
axis.

Theinter-element spacingsfor aRect i | i ner Mesh, on the other hand, are specified using aVVect or of one-dimensional
Ar r ays. Such a structure can be defined and filled using code like the following:

Vector<D, Array<1,int> > spacings;
for (d =0; d <D, d++) {
spacings(d).initialize(cell Domain[d]);
for (i =0; i < cellDomain[d].size(); i++) {
spaci ngs(d) (i) = (i+1)*10;

}

For Recti | i near Mesh, the mesh's boundary conditions are specified by giving an enumeration element for each face of the
mesh (which iswhy there are twice as many boundary condition specifiers as mesh dimensions). The values allowed for the mesh
boundary conditionsin this release of POOMA, which are defined in sr ¢/ Meshes/ MeshBC. h, areLi near Ext r apol at e,
Peri odi c,and Ref | ecti ve. For Uni f or nRect i | i near Mesh, the only sensible boundary condition is linear extrapolation
(extension using the constant spacings below the origin and beyond the physical mesh upper boundary), which is built into the
class; its constructors do not include MeshBC enum parameters.

Of course, before a set of pointsin space or spacings between them can sensibly be specified, a coordinate system must be chosen.
Thisisthe purpose of the Coor di nat eSyst emtemplate parameter. Its default value, Car t esi an, produces a Cartesian (truly
rectilinear) mesh. Other coordinate systems can also be used: Cyl i ndri cal , for example, produces a cylindrical coordinate
system which is curvilinear. The discrete mesh, however, isindexable like a Cartesian mesh, i.e. it is still logically rectilinear.

In order to allow applications to operate on meshes without hard-coding the mesh's size, spacing, or coordinate system, the mesh
classes store information about their domainsin Ar r ay data members. (Where possible, these arrays are implemented using
compute engines, so that memory is not wasted recording simple sequences of values.) Once accessed, these information arrays can
be used in data-parallel expressions like any others. In particular, they are often used with stencils to implement differential
operatorssuch asdi v() and gr ad() (asdiscussed in the next tutorial).

The Ar r aysin POOMA's mesh classes have guard layers, which are extra elements outside their cal culation domain whose values
are defined by the mesh's boundary conditions. All of the mesh classes in this release automatically create guard layers that have
Np/2 elements along each axis D, where Np is the number of vertices along that axis. This provides enough space for any plausible
accesses to mesh data outside the mesh boundaries, such as locating the nearest vertex to a particle outside the boundary, or
implementing a stencil operating on aFi el d centered at the mesh vertices which usesFi el d values at, and mesh spacings
between, vertices beyond the boundary by a distance corresponding to the stencil width.

A mesh's positional data can be accessed using two pairs of public methods. physi cal Donai n() returnsthe mesh's physical
domain (i.e. its vertex index domain), excluding its guard vertices. physi cal Cel | Domai n() returns adomain representing the
mesh's cells; for alogically-rectilinear mesh, thisisjust one element smaller per dimension than physi cal Domai n() (sincea
rectilinear mesh has one fewer cells than vertices). Similarly, t ot al Domai n() returnsthe domain of the mesh including its guard

file:///E|/r2/html/tut-07.html (3 of 16) [11/1/1999 7:02:11 PM]

POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields

vertices, andt ot al Cel | Domai n() performsasimilar function for the mesh's cells. The methodsver t exPosi ti ons() and
vertexDel t as() accessthe mesh'svertices and spacings respectively. All these methods return referencesto Ar r ay data
members, which can then be used like any other (read-only) Ar r ay.

Centering

A mesh does not fully specify the geometry of adiscrete field until it is combined with a centering. Centerings are defined relative
to the features that uniquely identify a mesh, such asits vertices, zones, faces, and edges. Figure 1 illustrates these features for an
example mesh zone in one, two, and three dimensions.

Figure 1. Samplerectilinear mesh zones. Black circles are the vertices, and empty circles are
the zone centers. The green axes help show that the zone center in 3D isin the physical center
of the rectangular parallelepiped.

The header filer 2/ src/ Geonet ry/ Cent er i ngTags. h defines several classes which specify centeringsin POOMA when
used as template parametersto the Di scr et eGeonet ry class discussed in the next section. Thefirst two are non-template

classes whose definitions are fairly simple:

struct Cell;
struct Vert;

For rectilinear meshes, these centering positions are just the white and black circles, respectively, from Figure 1.

Thethird predefined classin Cent er i ngTags. h isaparameterized class specifically designed for logically rectilinear meshes,
whose zones, vertices, faces, and edges can all be indexed in multi-dimensional array style (i.e. using (i , j , k) -styleindices):

tenplate <int Dm
cl ass RectilinearCenteringTag,
bool Conponentw se Rectil i near Cent eri ngTag: : conmponent wi se,
i nt Tensor Rank Rectil i near Cent eri ngTag: : t ensor Rank,
i nt NConponents Recti |l i near Cent eri ngTag: : nConponent s>
class RectilinearCentering

TheRect i | i near Cent eri ngTag template parameter can be instantiated using a class whose centerings which are defined
componentwise. This means that each component of a multicomponent field element type such asVect or or Tensor can haveits
own independent centering position. The value of the Boolean template parameter Conponent wi se flags whether thisis the case:
if itisf al se, then al components of each multicomponent Fi el d element are centered at the same point, rather than different
points.

The Tensor Rank and NConponent s parameters are required for componentwise centerings. Tensor Rank is the number of
indices required to index a component of the multicomponent field element type, i.e. 1 for Vect or s, and 2 for Tensor s.
NConponent s isthe number of valuesindexed by each component index, such as Di mfor Vect or <Di n» or Tensor <Di np.

The actual descriptive information about the centeringisinthe Rect i | i near Cent er i ngTag parameter. POOMA provides a
set of classes and class templates that can be used asthe Rect i | i near Cent eri ngTag parameter:

/1 Centering on faces perpendicular to Direction:
tenpl ate<int Direction>

file:///E|/r2/html/tut-07.html (4 of 16) [11/1/1999 7:02:11 PM]

POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields

cl ass FaceRCTag;

/1 Centering on edges parallel to Direction:
tenpl ate<int Direction>
cl ass EdgeRCTag;

/1 Conponentw se centering; each conponent centered on face perpendicular to
/1 that conmponent's unit-vector direction:

tenpl at e<i nt Di >

cl ass Vect or FaceRCTag;

/1 Componentw se centering; each conponent centered on face parallel to that
/1 conponent's unit-vector direction:

tenpl ate<int D np

cl ass Vect or EdgeRCTag;

Asan example, the FaceRCTag in three dimensions defines centering points on the zones' rectangular face centers, perpendicular
to the direction specified by the template parameter. With Di r ect i on=0 (the X direction), this defines the face centers
perpendicular to the X axis. In two dimensions, zone faces and zone edges are degenerate; in one dimension, faces are further
degenerate with vertices. Figure 2 shows the FaceRCTag<0> centering positions (red circles) relative to asingle zone in these
Cases.

L &
& O & ¢ O L
L L

Figure 2: Centering positions of FaceRCTag<0>in 1, 2, and 3 dimensions.

Figure 3 shows an exampl e two-dimensional mesh with 4x4 vertices (and thus 3x3 cells), with the complete set of
FaceRCTag<0> centering points shown. Note that it is really the geometry class using the centering class that determines where
the coordinate locations of the centering points are; the figure shows the standard definition (i.e. the geometric centers of the faces).
Note also that the number of centering pointsis egual to the number of cellsin the Y direction and the number of verticesin the X
direction. A geometry class using this centering would provide centering position vectors indexable on this physical indexing
domain.

file:///E|/r2/html/tut-07.html (5 of 16) [11/1/1999 7:02:11 PM]

POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields

Figure 3: Two-dimensional mesh with complete set of centering points.

Asan example of componentwise centering, consider Rect i | i near Cent er i ng<2, Vect or FaceRCTag<2>>. TheY
components of afield element of Vect or type are centered on the faces perpendicular to the Y axis, while the X components are
centered on the faces perpendicular to X. Figure 4 illustrates this, by showing the X and Y components as horizontal and vertical
arrows rooted at their centering points. The dotted blue lines indicate which pairs of components are components of asingle field
element. The green arrows indicate valid X and Y components at the extremal high-end faces. It is only legal to refer to the one valid
component of avector at thislocation (using its corresponding 1JK index). The companion perpendicular components for these
values are not defined. (See the note on alocation below for more details.)

file:///E|/r2/html/tut-07.html (6 of 16) [11/1/1999 7:02:11 PM]

POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields

Figure 4: Example of componentwise centering, showing
Rectilinear Centering< 2,Vector Face<2>>

A Note on Allocation

For componentwise rectilinear centeringssuch asRect i | i near Cent eri ng<2, Vect or Face<2> >, POOMA currently
alocates Fi el d domains (and Ar r ay domainsin the associated Di scr et eGeonet r y) with storage for nVer t s elementsin
each dimension, so storage for aVect or with both components at these extremal locationsis allocated, but only the valid
component islegally accessible.

Geometry

The next layer of support in POOMA for fieldsisits geometry abstraction. A geometry is a set of pointsin a coordinate space. This
implies adefinition of a coordinate system, an explicit or implicit specification of the pointsin the set, and what if any boundaries
bound the set of points. A geometry might be a continuous set of points, but currently POOMA only provides geometry classesto
represent discrete sets of points. Furthermore, POOMA's current geometry classes are restricted to sets of points defined relative to
amesh (represented by one of the POOMA mesh classes described above) according to a centering (represented by one of the
POOMA centering classes described above).

Geometries are described in this release of POOMA by partial specializations of the Di scr et eGeonet ry classtemplate.
Di scret eGeonet ry itself isdefinedinsr c/ Geonet ry/ Di scr et eGeonet ry. h. The class has an empty body (i.e. no
methods or data members), and is parameterized as:

tenpl at e<cl ass Centering, class Mesh> class DiscreteGeonetry;

The two header filesDi scret eGeonet ry. URM h and Di scr et eGeonet ry. RM h instantiate this class with particular
template parametersto create the Uni f or nRect i | i near Mesh and Rect i | i near Mesh classes respectively. Both of these
classesinherit fromthe Rect i | i near Geonet r yBase class, which among other things defines default implementations for

Di scret eGeonetry'sx(),total Domai n(),andphysi cal Dormai n() methods. Fi el d relies on these to implement its
own methods---for example, Fi el d: : x() simply forwards its arguments to its geometry data member, on the assumption that this
member will itself have amethod called x() .

file:///E|/r2/html/tut-07.html (7 of 16) [11/1/1999 7:02:11 PM]

POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields

By default, a POOMA geometry does not have any guard cells, i.e. its total domain isthe same asits physica domain. (Seethe
section on meshes for an explanation of these terms.) An application can request guard layers for a geometry by passing a

Guar dLayer s object to the geometry's constructor, or equivalently itsi ni ti al i ze() method. Guar dLayer s isdefined in
src/ Layout/ Guar dLayer s. h, and simply describes the depth of the guard layer along each axis.

POOMA's geometry abstraction describes a set of pointsin space, and is intended to serve primarily as adomain (in the functiona
sense) of something like afield. In order to be used in thisway, i.e. in order to be used as the Geonet r y template parameter to
POOMA'sFi el d class, aclass must define certain constants, types, and methods. The two required constants are;

di mensi ons:

The (integer) dimensionality of the set of points (either the dimensionality of the space, or alower valueif the setisa
lower-dimensional surface).

coor di nat eDi nensi ons:
The (integer) dimensionality of the coordinate system (i.e. the dimensionality of the space the geometry defines).

The types which a geometry class must define are:
Coordi nat eSystem t:
The type of the coordinate system.
Donai n_t:
The type of the geometry's physical and total domains (i.e. the type of the objects used to represent the geometry's set of
points). Thisisalso usualy obtained from the geometry's underlying mesh.
Poi nt Type_t:
The type that represents a point in the coordinate space of the geometry.
PositionArray_t:
Thetype of Const Ar r ay returned by the x() method described below.

PositionArray_t isthetypeof Array object "storing" the geometry's set of position values. For the Di scr et eGeonet ry
types based on rectilinear meshes provided in this release of POOMA (i.e. those whose Mesh template parameter is

Uni fornRecti | i near Mesh<Di nor Recti | i near Mesh<Di n»), Posi ti onArray_t isan

Array<Di m Poi nt Type_t, Posi ti onFunct or _t >. For a continuous geometry, this would be some kind of continuous
Array type.

The array domain of that Ar r ay hastype Domai n_t . Domai n_t must be atype which can serve as a constructor argument for
that POOMA Ar r ay, and must have appropriate dimensionality. For the Di scr et eGeonet ry classes mentioned in the previous
paragraph, Donai n_t isat ypedef for | nt er val <Di n. For a continuous geometry, it would be some object representing a
continuous domain, like a sphere or a spline-surface-bounded solid.
Finally, a class which is to be used as a geometry must define the following methods:
physi cal Domai n() :
Returns this geometry's physical domain, i.e. an instance of some class representing the set of pointsin the domain'sinterior,
not including its global guard layers. This can be an explicit representation, such as a container of point values, or an implicit
representation, such as a parameterized function object defining the bounding surface of the domain, with a method to
determine whether a point in the space isinside or outside the set. The type of this object must be Domai n_t ,

t ot al Domai n():

Returns the geometry's total domain (including global guard layers). This method must be implemented even if the geometry
has no guard layers; in such a case, it must return the same domain that is returned by physi cal Domai n() .

x():
returns an array of centering positions corresponding to the total domain.
TheDi scr et eGeonet r y-based classes provided with this release of POOMA actually provide aricher interface than the one
described above. First, each of these classes defines the following constant:
conmponent Cent er ed:
t r ue if thisfield has different centerings for each component, and f al se otherwise.

Second, POOMA'sDi scr et eGeonet r y-based classes create the following convenience typenames.
Centering_t:

the centering tag class. Thisjust exportsthe Cent er i ng template parameter value.
Guar dLayers_t:

file:///E|/r2/html/tut-07.html (8 of 16) [11/1/1999 7:02:11 PM]

POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields

The type of the object used to represent guard layers for this geometry.

Finally, the classes based on Di scr et eGeonet r y define the methods listed below.
centering():
Returns the centering object for this geometry (i.e. an instance of its Cent er i ng template parameter).
guardLayers():
Returnsthe Guar dLayer s object for this geometry.
initialized():
Returnst r ue if the mesh has been initialized, and f al se otherwise.
mesh():
Returns the mesh relative to which the Di scr et eGeonet ry isdefined.
poi nt 1 ndex():

GivenaVect or <Di m T> position in the geometry's mesh space, returns the proper Loc<Di n® position in the geometry's
domain space that is nearby, taking centering into account.

A Note on Positions

The class used asthe Geonet r y template parameter for Fi el d must provide methods for returning the spatial positions of its
points. All of these methods in the geometry classes in this release of POOMA are based on Ar r ay s of position Vect or swhich
use compute engines. As an example, the Di scr et eGeonet ry<Cel |, Mesh_t > classes define the locations of the zone
centersrelative to the set of faces that define a zone. For logically rectilinear meshes, thisistypically defined as the geometric
center of the zone (whichiswhat Di scr et eGeonet r y<Cel | , Mesh_t > definesit as), but thisis not necessarily the case. A
user could, for example, define a geometry classwhich used aUni f or mRect i | i near or Recti | i near mesh, but which
offset the definition of the zone centers from the geometric centers to implement special types of differential operators.

Field

As stated above, the class Fi el d represents both aregion of space, and a set of values defined on and around that region---a
mapping from pointsin the region to values. This release of POOMA only supports fields with up to three dimensions, although
future releases of the library may support higher-dimensional structures.

Fi el d hasthreetemplate parameters. The first, Geonet r y, defines the region of space. The second and third template parameters
toFi el d arelikethose of Ar r ay: they specify thetype T of the field's values, and the type of the engine used for storing or
evaluating the field's values. The whole definition is therefore:

t enpl at e<cl ass Geonetry,

class T = POOVA DEFAULT_ELEMENT_TYPE,

cl ass Engi neTag = POOVA_DEFAULT_ENG NE_TYPE>
class Field : parent classes

{
body
b

A Const Fi el d classwith the same template parametersis also defined, just asa Const Ar r ay is defined to accompany Ar r ay.

A Fi el d hasavaueof type T at every point in the spatial domain defined by its geometry class parameter Geonret ry. In this
sense, aFi el d isaconcrete representation of afunction, whose domain is specified by its geometry, and whose range is the set of
valuesthe Fi el d contains.

A Fi el d'svalues can be accessed or modified by subscripting the Fi el d with scalar indices or an integer-based indexing domain
suchasan | nt erval (likean Array'svalues are accessed or modified). Aswell as storing values, aFi el d can provide
information about the space on which it isdefined. If f isaFi el d, thenf. x() isaConst Ar r ay with the same number of
dimensions asf , whose elements are the positions at which f is defined. In onedimension, f . x(0) istherefore the position of one
corner of the physical domain the Fi el d represents; in functional terms, the field mapsthe point f . x(0) to thevaluef (0) .

As mentioned above, this release of POOMA only supports discrete fields on regularly-spaced pointsin up to three dimensions.
Thisrestriction may be relaxed in future versions; in particular, continuous geometries and fields may also be supported. In this
case, f . x() would return a continuous Const Ar r ay, which would be accessed using floating-point indices, and which would
use some analytic or interpolative function to return values.

file:///E|/r2/html/tut-07.html (9 of 16) [11/1/1999 7:02:11 PM]

POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields

The discussion of geometry above has implied the possible existence of layers of guard elements lying around discrete fields. These
elements are used to implement boundary conditions, so that discrete operators can treat the "interesting” (i.e. interior) elements of
Fi el dsuniformly. A Fi el d can automatically update parts of its domain using boundary condition objects stored in alist. Before
being accessed, these boundary condition objects can be queried as to whether the domain they manage needs updating, and then
told to update themselves if necessary.

POOMA predefines boundary-condition classes for use with Fi el dsthat are based on its rectilinear mesh geometry classes. The
current release provides periodic, reflecting, constant, and linear-extrapolation boundary condition types; future releases may may
include others. More importantly, the required interface for the boundary condition classes is meant to make it easy for usersto
implement their own specia boundary conditions. By following this interface prescription, applications can attach their own
boundary conditionsto Fi el d objects and have them updated automatically, just as the predefined POOMA boundary conditions
are updated. The interface allows writing boundary conditions using high-level array-syntax coding. (See the next tutoria for more

information on writing boundary conditionsin POOMA.)

Operations on Fi el dswith globa guard layers might need to accessFi el d: : x() positional valuesin those guard layers, for
example to implement spatially-dependent boundary conditions, or to implement differential operators. Because of this, the
geometry classeswhich Fi el d uses must be able to supply positional values beyond the physical centering positions associated
with the Fi el ds physica domain. This, in turn, means that the mesh classes used by discrete geometry classes need to return
arrays of vertex positions beyond the edge of the actual mesh boundary, from which the geometry can compute the associated cell
and face positions at which the Fi el d is defined.

As discussed above, POOMA's mesh classes add guard layersto their contained arrays of positions, spacings, and volumes by
making use of the fact that the indexing domain of an Ar r ay can start some number of elements below zero and extend beyond the
number of vertices at the other side. The existence of guard layers affects the information that Fi el ds provide about the spatial
position of their elements. The expression f.x(0) is actually the position of one corner of the total domain of theFi el d f only if f
has no guard layers, since the ruleis that the physical domain of aFi el d is always zero-based. This means that in the presence of
guard layers the actual corners of the Fi el d will have negative indices. However, it is always true that the Fi el d maps the point
f.x(0) tothevauef (0).

The number of guard layersinthe Di scr et eGeornet r y objectsis determined by user input on construction (using

Guar dLayer s<Di > objects), and becomes the number of guard layersthat the Fi el d itself hasaswell. The

Di scr et eGeonet ry usesvaues from the guard layersin the mesh to fill its arrays of centering-point values (which are returned
by itsx () method). The number of guard layers specified for the Di scr et eGeonet ry, and hencefor any Fi el d that is
constructed using the Di scr et eGeonet ry object, cannot be larger than the N/2 number of guard layers automatically defined in
theRecti | i near Mesh or Uni f or nRect i | i near Mesh object used to construct the Di scr et eGeonet ry.

A Note on Allocation

What's going on under the hood when an application makesaDi scr et eGeonet r y object with thisVect or Face type of
componentwise centering for its Cent er i ng parameter? TheDi scr et eGeonetry: : t ot al Dormai n() method returns a
domain with an extent of nVer t sxnVer t sxnVer t s (in three dimensions). When the application constructsaFi el d using a
geometry object as a constructor argument, it usesDi scr et eGeonetry: : t ot al Domai n() in order to dlocate its own

Ar r ay storage. The geometry classes haveinternal Ar r ay data members called posi ti ons_mwhich store the position values
accessed by Di scret eGeonetry: : x();inal theexisting Di scr et eGeonet ry partial specializations, these Ar r ays have
compute-based engines, so they don't allocate any storage.

The domains of these Ar r ays must still be specified. In ageometry class which has Vect or Face for itsCent er i ng template

parameter, these compute-based Ar r ay data members have their domains set to nVer t sxnVer t sxnVert s. Any Fi el d which
uses this geometry (whose Fi el d: : x() method forwardsto Fi el d: : geonet ry(): : x()) will therefore automatically have

its domain aligned with that of the geometry.

Example: One-Dimensional Scalar Advection

The example program in exanpl es/ Fi el d/ Scal ar Advect i onlDillustrates the features of fields introduced so far by
simulating advection in one dimension. A later examplein thistutorial shows how to generalize thisto handle N dimensions.

The partial differential equation involved is:
du(x,t)/dt = -v* du(xt)/dx

where v is a constant propagation speed, and da/db represents the partia derivative of a with respect to b. The anaytic solution of
thisisjust arightwards propagation at speed v of the initial condition:

file:///E|/r2/html/tut-07.html (10 of 16) [11/1/1999 7:02:11 PM]

POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields

u(x,t) = uO(x - wt)

The figure below shows that the numerical solution approximates this well.

1D Scalar Advection

11 t
—0
0.8 1
20
0.6 1 40
x
30.4 60
—80
0.2 - —100
0 — T T 1
0 10 20 30
X

This equation is aspecial 1-dimensional version of the general flux-conservative equation:
du(xy,z,t)/dt = - div(F)
where F is avector function:
F = (Fx(Xy.zt), Fy(xy.zt), Fxy.zt))
The N-dimensional scalar advection program discussed |ater solves this equation for the special case where Fy = v,*u, Fy = v*u,

and F, = v,*u. Note that in one dimension this reduces to exactly the 1D PDE stated above.

The one-dimensional code is shown below. For this particular differential equation, asimple Euler scheme is unstable, so the code
uses a leap-frog method based on the difference equation:

(ujn+l - ujn-l) / (2 dt) =-V (Uj+1n - uj-ln) / (2 dX)

This schemeis primed by executing asingle Euler step:
(L -y /dt=- v (Uyq" - Ug") / (2 dx)

001 #include "Pooma/Fiel ds. h"
002

003 #include <iostreane

004 using nanespace std;

005

006 int nain(int argc, char *argv[])
007 {

008 Poorma: :initialize(argc,argv);
009

010 /1l Create the physical domains (1D):
011 const int nVerts = 129;

012 const int nCells = nVerts - 1;

013 I nt erval <1> vert exDomai n(nVerts);
014

file:///E|/r2/htmi/tut-07.html (11 of 16) [11/1/1999 7:02:11 PM]

POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields

015 /]l Create the (uniform logically rectilinear) nesh
016 const Vector<l1> origin(0.0), spacings(0.2);

017 typedef UnifornRectilinear Mesh<l> Mesh_t;

018 Mesh_t mesh(vertexDomain, origin, spacings);

019
020 /]l Create two geonetry objects - one allowing 1 guard layer to
021 /1 account for stencil width and another with no guard | ayers to support

022 [l tenporaries:

023 typedef DiscreteCGeonetry<Cell, UnifornmRectilinear Mesh<l> > Geonetry t ;
024 Geonetry_t geomlc(nesh, GuardLayers<1>(1));

025 Geonetry_t geomlng(mesh);

026

027 /1 Create the Fields:

028

029 /1 The flow Field u(x,t):

030 Fi el d<Geonetry_t> u(geomilc);

031 /1l The sane, stored at the previous tinmestep for staggered | eapfrog
032 /1l plus a useful tenporary:

033 Fi el d<Geonetry_t> uPrev(geonilng), uTenp(geonilng);

034

035 /1 Initialize flow Field to zero everywhere, even gl obal guard | ayers:
036 u.all () = 0.0;

037

038 /1 Set up Periodic Face boundary conditions:

039 u. addBoundar yCondi ti on(Peri odi cFaceBC(0)); /1l Low X face

040 u. addBoundar yCondi ti on(Peri odi cFaceBC(1)); /1 Hi gh X face

041

042 /1 Used various places bel ow

043 I nterval <1> pd = u. physi cal Domai n();

044

045 /1 Load initial condition u(x,0), a pulse centered around nCells/4 and

046 /1 decaying to zero away fromnCells/4 both directions, with a height of 1.0,
047 /1 with a half-width of nCells/8:

048 const doubl e pul seWdth = spaci ngs(0)*nCel | s/8;

049 const double u0 = u.x(nCells/4)(0);

050 u = 1.0*exp(-pow2(u.xConmp(0) (pd)-ul)/(2.0*pul seWdth));
051

052 [/ Qutput the initial field:

053 std::cout << "Time = 0:\n"

054 std::cout << u << std::endl;

055

056 const double v = 0.2; // Propagation velocity

057 const double dt = 0.1; // Timestep

058

059 /1 Prime the | eapfrog by setting the field at the previous tinestep
060 /1 using the initial conditions:

061 uPrev = u

062

063 /1 Do a prelimnary tinestep using forward Eul er, coded directly using

064 /1 data-parallel syntax:

065 u -= 0.5*v*dt*(u(pd+1)-u(pd-1))/spaci ngs(0);

066

067 /1 Now use staggered | eapfrog (second-order) for the remai nder of the
068 /1 tinmesteps:

069 for (int timestep = 2; tinmestep <= 1000; tinmestep++)

070 {

071 uTemp = u;

072 u = uPrev-v*dt*(u(pd+1)-u(pd-1))/spacings(0);
073 if ((tinestep % 200) == 0)

074 {

075 /1 Qutput the field at the current tinmestep

file:///E|/r2/html/tut-07.html (12 of 16) [11/1/1999 7:02:11 PM]

POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields

076 std::cout << "Time = " << tinmestep*dt << ":\n";
077 std::cout << u << std::endl;

078 }

079 uPrev = uTenp;

080 }

081

082 Pooma: : finalize();

083 return O;

084 }

After initializing the POOMA library, this code sets up the world on which the equation is to be solved. Lines 11-13 define the size
of the simulation, while lines 16-18 define the mesh on which calculations will be performed. Lines 23-25 then use this mesh to
define two geometry objects. Thefirst, geonilc, includes aguard layer, so that a finite difference stencil can be applied safely. The
second, geomnlng, does not include this guard layer, but instead only represents the "actua” region of the solution. This geometry
is used to define temporaries, as discussed below.

The actual flow field variable u is declared on line 30. Since thisis the variable to which the full stencil islater applied, it uses the
full geometry geonic (the one with the guard layer). The Fi el d used to record the previousiteration's results, and a
general-purpose temporary, are declared on line 33. These Fi el dsusethe geomlng geometry, which does not include memory
for guard layers. While the memory saved by not having guard layers for temporariesisinsignificant in this case, it can be
substantial on larger problems, and in more dimensions.

Thefield u isinitialized to zero everywhere (even in its guard layers) on line 36, using the method al | () to get areference to the
whole of the field's data. Periodic boundary conditions are then set on lines 39-40. Line 43 then records the bounds on the problem
domaininthel nt er val pd.

The statements on lines 48-50 insert a symmetric pulse into the field. The boundary conditions are applied after thisis done to
ensure that the field isin a consistent state. The values of the field at this point are then printed out, for later conversion into the
graph shown earlier.

The constants controlling the ssmulation are set on lines 56-57, while the advection calculation itself isinitialized on lines 61 and
65. The timestep is 0.1, and the propagation velocity isfixed at 0.2 (both in arbitrary units). After storing theinitial state of the field
inuPr ev, so that the loop beginning on line 69 will perform itsfirst iteration correctly, the program calculates the first set of new
valuesfor the field directly. Note how the domain of this calculation is defined using the pd value that was obtained from the field
itself. Thisidiom helps ensure the consistency of large programs, which many juxtapose many different domains. It also helps make
the program more robust in the face of incremental evolution: if the declaration of an important variable (likethe Fi el d u) is
atered, calculationsinvolving that variable reflect those alterations automatically.

The loop on lines 69-80 repeatedly updates the Fi el d by invoking the calculation on line 72. The bulk of the code in the loop
(lines 73-78) simply outputs the state of the Fi el d every 200 iterations, so that a graph showing its evolution can be created |ater.
Finally, the library is shut down, and the program terminated, on lines 82-83.

The most important thing to note about this program is the way in which various calculation domains are declared and combined.
Asagenera rule, only asmall number of calculation domains are ever declared from scratch; al others are then derived from these.
Asacorollary, the extent of calculationson Fi el dsare usually determined by interrogating the Fi el d, rather than by using
long-lived Ranges or other objects. This helps keep the code correct asit evolves, and is aso an important step toward generalizing
codes such as this to handle an arbitrary number of dimensions.

Example: N-Dimensional Scalar Advection

The differential equation solved in the preceding exampleis a specia 1-dimensional version of the general flux-conservative
equation:

du(x,y,z,t)/dt = - div(F)
where F is avector function:
F = (Fx(xy.zt), Fy(xy.zt), Fxyzt))

The N-dimensional scalar advection program discussed in this tutorial solves this equation for the special case where Fy = v, *u,
Fy=w*u, and F, = v,*u. Note that in one dimension this reduces to the equation shown in the previous example.

The N-dimensional code shown below revisits the scalar advection code shown earlier, using aless dimension-dependent
implementation strategy. Again, since asimple Euler scheme is unstable for this particular differential equation, the code uses a

file:///E|/r2/html/tut-07.html (13 of 16) [11/1/1999 7:02:11 PM]

POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields

leap-frog method based on the difference equation:
(U™ - U2) /(2 dit) = - div(v ug)

where;
V=VXH Y+ V2

in three dimensions, and the div() difference operator on the right-hand side is centered in space about (i,j,k), so that it involves
differences of the form:

Vo (Ui k" - Ujog j /X
As described in the next tutorial, thisis exactly what POOMA'sdi v () function does, so the leap-frog timestepping is implemented
using:
u=uPrev - 2 div<Cell>(v dt u)
This schemeis primed by executing a single Euler step, which also uses POOMA'sdi v() function to do the space-centered
differencing on the right-hand side:
(U'n+1 - an) [dt=- diV(V Uijkn)

|
u =u - div<Cell>(v dt u)

Aswe have seen, al of the important classesin POOMA take the dimension of the problem space as atemplate parameter.

Provided al definitions in the program are made in terms of this parameter, or in terms of types exported from POOMA classes by
t ypedef s, applications can move from two to three dimensions simply by changing line 13 in the following source code:

001 #include "Poona/Fields. h"

002

003 #incl ude <iostreanr

004

005 int nmain(int argc, char *argv[])
006 {

007 /[l Set up the library

008 Pooma: :initialize(argc, argv);
009

010 /] Create the physical domains:
011

012 /1 Set the dinmensionality:

013 const int Dim = 2;

014 const int nVerts = 129;

015 const int nCells = nVerts - 1;

016 I nt erval >Di n» vert exDomai n;

017 int d;

018 for (d =0; d <Dm d++)

019 {

020 vertexDomai n[d] = Interval <1>(nVerts);
021 }

022

023 /] Create the (uniform logically rectilinear) mesh.

024 Vector<Di nm> origin(0.0), spacings(0.2);
025 typedef UnifornRectilinearMesh<Di n» Mesh t;
026 Mesh_t mesh(vertexDonain, origin, spacings);

027
028 /1l Create two geonetry objects - one allowing 1 guard |ayer to account for
029 /1 stencil width and another with no guard | ayers to support tenporaries:

030 typedef Di screteGeonetry<Cell, UnifornRectilinearMesh<Di n» > Geonetry t;
031 Geonetry_t geom(nesh, GuardLayers<Di nm>(1));

032 Ceonetry_t geomNE nesh) ;

033

034 /1l Create the Fields:

035

file:///E|/r2/html/tut-07.html (14 of 16) [11/1/1999 7:02:11 PM]

POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields

036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090

}

/1 The flow Field u(x,t):

Fi el d<Geonetry_t> u(geom;

/1 The same, stored at the previous tinestep for staggered | eapfrog
/1 plus a useful tenporary:

Fi el d<Geonetry_t> uPrev(geonNG, uTenp(geomNG);

/1 Initialize Fields to zero everywhere, even global guard |ayers:
u.all() = 0.0;

/1 Set up periodic boundary conditions on all mesh faces:
u. addBoundar yCondi ti ons(Al | Peri odi cFaceBC());

/1 Load initial condition u(x,0), a symetric pulse centered around nCells/4
/1 and decaying to zero away fromnCells/4 all directions, with a hei ght of
/1 1.0, with a half-width of nCells/8:

const doubl e pul seWdth = spaci ngs(0)*nCells/8;

Loc<Di > pul seCenter;

for (d =0; d <Dm d++) { pulseCenter[d] = Loc<l>(nCells/4); }

Vector<Di n> u0 = u. x(pul seCenter);

u=10* exp(-dot(u.x() - u0, u.x() - u0) / (2.0 * pulsewdth));

/[l Qutput the initial field:
std::cout << "Tinme = 0:\n";
std::cout << u << std::endl;

const Vector<Di nk v(0. 2); /1l Propagation velocity
const double dt = 0.1; /1 Timestep

/1 Prime the leapfrog by setting the field at the previous tinestep using the
/1 initial conditions:
uPrev = u;

/1 Do a prelimnary timestep using forward Eul er, using the canned POOVA
/1 stencil-based divergence operator div() for the spatial difference:
u-=div<Cell>(v * dt * u);

/1 Now use staggered |l eapfrog (second-order) for the remaining tinmesteps
/1 The spatial derivative is just the second-order finite difference in the
/1 canned POOMA stencil -based di vergence operator div():
for (int tinestep = 2; tinestep <= 1000; tinmestep++)
{
uTenp = u;
u=uPrev - 2.0 * div<Cell>(v * dt * u);
if ((tinestep % 100) == 0)

/1 Qutput the field at the current timestep:
std::cout << "Time = " << tinmestep*dt << ":\n";
std::cout << u << std::endl;

}

uPrev = uTenp;
}
Pooma: : finalize();
return O;

The key lines are 13-15, which define the dimensionality of the simulation, and the size of the domain on which the simulation will
be performed. Lines 18-21 then initialize an array of vertex domain objects, the number of elementsin which is defined in terms of
the Di mconstant. Similarly, lines 24-32 create a mesh, and a geometry, in a dimension-independent way. Note that when asingle
value is passed to the constructor of an N-dimensional Vect or , that valueis assigned to al of the vector's elements. Note also the
use of the vector dot product dot (Vect or <>, Vect or <>) inline 55 to compute the distance from the pulse-center point.

file:///E|/r2/html/tut-07.html (15 of 16) [11/1/1999 7:02:11 PM]

POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields

Therest of this program continues in this vein---periodic boundary conditions are set on line 46, for example, and the initial pulseis

created on lines 51-55. The result is a program which is only six lines longer than its one-dimensional equivalent, but capable of
changing dimension with ease.

Summary

One of the principal motivations behind POOMA isto provide C++ classes which directly address numerical science problems
using the language of numerical scientists. The Fi el d classes described in thistutorial exemplify this. By managing boundary
conditions, and supporting efficient evaluation of differential operators, these classes provide the functionality that modern
numerical algorithms require, and allow numerical scientists to concentrate on what they want to calculate, rather than on how it is
to be calculated.

[Prev] [Home] [Next]
Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/tut-07.html (16 of 16) [11/1/1999 7:02:11 PM]

http://www.acl.lanl.gov/pooma/

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

Parallel Object-Oriented ~ 4
Methods.and Applications ™

POOMA Tutorial 8
More on Meshes, Centerings, Geometries, and
Fields

Contents:

Introduction

Div, Grad, and Averaging

More on Meshes

Views and the L oss of Geometry Information

Operations and Their Results

Field Stencils

More on Boundary Conditions
Using Pre-Built Boundary Conditions
Setting Boundary Conditions on Components
Boundary Condition Initialization Functors
Writing Boundary Conditions
Associating Boundary Conditions with Operators

Summary

Introduction

The previous tutorial introduced the basic features of POOMA's Fi el d classes, and the supporting mesh and geometry
classes. Thistutorial describes some of the more advanced features of these classes, including centering, differential operators,
views, and stencils.

Div, Grad, and Averaging

One way to implement discrete spatial differencing operatorsis to write data-parallel expressions using indexing objects and
offsets, asis shown in the first example of the previous tutorial. In the same way that POOMA providesthe St enci | class
system for Ar r ay, it providesthe Fi el dSt enci | classfor Fi el d. This provides an aternative, and more efficient, way to
implement spatial differencing operators.

Note: thisis an experimental feature in POOMA 2.1 which currently does not work correctly with the parallel or the serial
asynchronous schedulers (conf i gur e options- - paral | el --sched asyncor--parallel --sched

seri al Async). Serial code should work for all engine types. These limitations will be addressed in a future version of
POOMA.

Fi el dSt enci | isdifferent from St enci | primarily inthat it allows the output Fi el d to have a different geometry than
theinput Fi el d. Typically, thisisuseful for implementing operators that go from one centering to another on a mesh.

POOMA provides asmall set of canned differential operators that implement various gradient and divergence operators. These
are global template functionstaking a Const Fi el d asinput, and returning a Const Fi el d with a(possibly) different
centering on the same mesh as output. Because they are implemented using Fi el dSt enci | s, however, these functions do
not create temporary objects. Rather, they operate on neighborhoods of valuesin the input Fi el d and return a computed value
from each neighborhood. The index location of the output point in the output Fi el d is embedded in the

file:///E|/r2/html/tut-08.html (1 of 18) [11/1/1999 7:02:21 PM]

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

Fi el dStenci | : : oper at or () implementation; these Fi el dSt enci | functors for the POOMA divergence and gradient
implementations are parameterized on input and output Centering types with partial specializations. As a result, when these

Fi el dSt enci | -based differential operators are used in expressions with other Fi el dsand Ar r ays, their operations will all
be inlined via the expression-templ ate system.

The interface for the divergence and gradient operatorsisapair of global template functions called di v() andgrad() . The
former takes asitsinput aConst Fi el d of Vect or s(or Tensor s) on adiscrete geometry with one centering and returns a
Const Fi el d of scalars (or Vect or s). The geometry of the result is the same as that of the input, except possibly for a
different centering. The definition of di v() isas shown below; al of the real work is done in the partial specializations of

Di v'soperator ():

t enpl at e<cl ass Qut put Centering, class Geonetry, class T, class Engi neTag>
t ypenane
Vi ewl<Fi el dSt enci | <Di v<Qut put Centering, Geonetry, T> >,
Const Fi el d<Geonetry, T, Engi neTag> >:: Type_t
di v(const ConstFiel d<Geonetry, T, Engi neTag> &f)

{
typedef Fiel dStencil <Di v<Qut put Centering, CGeonetry, T> > Functor _t;
t ypedef ConstFi el d<Geonetry, T, EngineTag> Expression_t;
t ypedef Vi ewl<Functor_t, Expression_t> Ret_t;
return Ret _t::make(Functor_t(), f);
}

Thegrad() functionworksin asimilar way, and has asimilar definition. gr ad() takesasitsinput aConst Fi el d of
scalars (or Vect or s) on adiscrete geometry with one centering, and returnsa Const Fi el d of Vect or s (or Tensor s) ona
geometry that is the same except (possibly) for the centering. Aswith di v() , the real work happensin the partia
speciaizationsof Grad: : operator():

t enpl at e<cl ass Qut put Centering, class Geonetry, class T, class Engi neTag>
t ypename
Vi ewl<Fi el dSt enci | <G ad<Qut put Centeri ng, Geometry, T> >,
Const Fi el d<Geonetry, T, Engi neTag> >::Type_t
grad(const Const Fi el d<Geonetry, T, Engi neTag> &f)

{
t ypedef Fi el dStencil <G ad<Qut put Centering, Geonetry, T> > Functor t;
t ypedef ConstFi el d<Geonetry, T, Engi neTag> Expression_t;
t ypedef Vi ewl<Functor t, Expression_t> Ret t;
return Ret t::make(Functor t(), f);
}

The underlying G- ad and Di v functors oper at or () methods implement second-order centered finite-difference
approximations to the appropriate differential operators. For example, the one-dimensional speciadization for Di v taking a
vertex-centered Fi el d<Vect or > asinput, and returning a cell-centered scalar Fi el d<doubl e>is:

t enpl at e<cl ass F>
i nli ne QutputEl ement _t
operator()(const F &, int il) const

return
dot (f (i1l), Dvc_nf0]/f.geonetry().nmesh().vertexDeltas()(il))
+ dot(f(il + 1), Dvc_ni1l]/f.geonetry().nmesh().vertexDeltas()(il));

}

Once the syntax is stripped away, thisis equivalent to the difference between the values at the verticesi and i+1 (i.e. the left
and right neighbors of cell i, divided by the vertex-to-vertex spacing. The Dvc_mfactors are geometrical constants that depend
only on the dimensionality.

The following code takes the gradient of a vertex-centered scalar field and produces a cell-centered Fi el d<Vect or >:

Fi el d<Di scret eGeonet ry<Vert, Mesh_t>, doubl e> f Scal ar Vert (geonv) ;

file:///E|/r2/html/tut-08.html (2 of 18) [11/1/1999 7:02:21 PM]

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

Fi el d<Di scret eGeonetry<Cell, Mesh_ t>, Vector<Di n» > fVectorCell (geont);
fVectorCell = grad<Cell>(fScal arVert)

The table below shows the set of input and output Fi el d element types, and input and output centerings (on

Uni fornRecti | inear MeshandRecti | i near Mesh), for which these functors are defined with partial specializations.
This set duplicates al the functions provided in version 1 of POOMA. More input and output centering combinations will be
added as this version is developed, in particular face, edge, and component-wise centerings such as Vect or Face.

Input Output
Gradient Scaar/Vert Vector/Cell
Scalar/Cell Vector/Vert
Scalar/Vert Vector/Vert
Scalar/Cell Vector/Cell
Vector/Vert Tensor/Cell
Vector/Cell Tensor/Vert
Divergence Vector/Vert Scalar/Cell
Vector/Cell Scaar/Vert
Vector/Cell Scaar/Cell
Vector/Vert Scaar/Vert
Tensor/Vert Vector/Cell
Tensor/Cell Vector/Vert

A related function that POOMA providesistheaver age() function. Thisfunction isimplemented like, and has an interface
similar to, di v() andgr ad(), but al it calculatesis an (optionally weighted) average of Fi el d values from one centering
to another. The global template function definition for unweighted averageis:

tenpl at e<cl ass Qut put Centering, class Geonetry, class T, class Engi neTag>
t ypenane
Vi ewl<Fi el dSt enci | <Aver age<Qut put Cent eri ng, Geonetry, T,
MeshTrai t s<t ypename Ceonetry::Mesh t>::isLogicallyRectilinear> >,
Const Fi el d<Geonetry, T, Engi neTag> >:: Type_t
aver age(const Const Fi el d<Geonetry, T, Engi neTag> &f)
{
typedef Fiel dStencil <Average<Qut put Centering, Geonetry, T,
MeshTr ai t s<t ypename Ceonetry::Mesh_t>::isLogicallyRectilinear> >
Functor t;
typedef ConstFiel d<CGeonetry, T, Engi neTag> Expression_t;
t ypedef Vi ewl<Functor_t, Expression_t> Ret _t;
return Ret t::make(Functor _t(), f);

}
while that for weighted averageis:

tenpl at e<cl ass Qut put Centering, class Geonetry, class T, class EngineTag,
class TW cl ass Engi neTagW
t ypenane
Vi ew2<Wei ght edFi el dSt enci | <Wei ght edAver age<Qut put Centeri ng, Geonetry, T,
TW MeshTraits<typename Geonetry::Mesh_t>::islLogicallyRectilinear> >,
Const Fi el d<Geonetry, T, Engi neTag>,
Const Fi el d<Geonetry, TW Engi neTagWs >:: Type_t
aver age(const ConstFi el d<Geonetry, T, Engi neTag> &f,
const ConstFi el d<Geonetry, TW Engi neTagWs &wei ght)
{

t ypedef Wi ght edFi el dSt enci | <Wei ght edAver age<Qut put Cent eri ng, Geonetry, T,

TW MeshTraits<typenane Geonetry::Mesh t>::islLogicallyRectilinear> >
Functor _t;

file:///E|/r2/html/tut-08.html (3 of 18) [11/1/1999 7:02:21 PM]

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

typedef ConstFi el d<Geonetry, T, Engi neTag> Expressionl_t;
typedef ConstFiel d<Geonetry, TW Engi neTagWs Expressionl_t;
typedef Vi ew2<Functor_t, Expressionl_t, Expression2_t> Ret_t;
return Ret _t::make(Functor_t(), f, weight);

}

The second definition takes an extra argument wei ght , which has the same geometry astheinput Fi el d f, and multiplies
the set of values of the f that are combined to produce an output value. The sum of these weighted values are normalized by
dividing by the sum of the weight values.

More on Meshes

POOMA'sUni f ornRecti | i near Mesh and Rect i | i near Mesh also expose some data arrays that provide such things
as cell volumes, surface normal vectors for cell faces, and so on. (These arrays are based on compute engines for the sake of
storage efficiency.) There are also methods such ascel | Cont ai ni ng() , which returns the cell containing a specified
point---thisis useful in contexts such as particle-mesh interactions. The following table lists the most useful of these; for an
up-to-date description the full set, please see the class header files.

Exported typedefs

Axi sType_t The type used to represent the range of a coordinate axis (the mesh classs T
parameter).

Cel | Vol unesArray t Thetype of Const Ar r ay returned by cel | Vol unmes() .

Coor di nat eSystem t The same type as the template parameter Coor di nat eSyst em

Dorrai n_t The type of the mesh'sdomain. Thisis currently | nt er val <Di .

Poi nt Type_t The type of a point (coordinate vector) in the mesh.

Positi onsArray t Thetype of Const Ar r ay returned by ver t exPosi ti ons().

Spaci ngsArray_t Thetype of Const Ar r ay returned by ver t exDel t as() .

Sur f aceNor mal sArray_t Thetypeof Const Array returned by cel | Sur f aceNor mal s() .
Sur f aceNor mal sArray_t Thetypeof Const Array returned by cel | Sur f aceNor mal s() .

Thi s_t The type of this class.

Exported Enumerations and Constants

di mensi on The dimensionality of the mesh (see the note below).
coor di nat eDi nensi on The dimensionality of the mesh's coordinate system.
Accessors

coor di nat eSyst em() Returns the mesh's coordinate system.

origin() Returns the mesh origin.

Domain Functions

Returns the mesh's domain, excluding its guard layers. Thisis an indexing object

physi cal Dormai n() spanning the mesh's vertices, and has type Domai n_t .

t ot al Domai n() Likedomai n(), but including the mesh's guard layers.
physi cal Cel | Domai n() Returnsthe domain of the mesh's cells.
tot al Cel | Domai n() Likecel | Domai n() , but including the mesh's guard layers

Spacing Functions

(Defined for Uni f or mRect i | i near Mesh only.) Returns the constant mesh

meshSpaci ng() spacings as a coordinate vector of type Poi nt Type_t.

vertexDel tas() Returnsa Const Ar r ay of inter-vertex spacings.
Position Functions

vert exPositions() Returnsa Const Ar r ay of vertex positions.
Volume Functions

cel | Vol unes() ReturnsaConst Ar r ay of cell volumes.

tot al Vol umeOf Cel | s() Returnsthetotal volume of (a subset of) the mesh.
Céell surface Functions
cel | SurfaceNormal s() ReturnsaConst Arr ay of surface normalsfor the cells.

file:///E|/r2/html/tut-08.html (4 of 18) [11/1/1999 7:02:21 PM]

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

Point L ocator Functions

cel | Cont ai ni ng() Returns the indices of the cell containing the specified point, asaLoc<Di n.
near est Vert ex() Returns the indices of the vertex nearest the specified point, asaLoc<Di .
vert exBel ow() Returns the indices of the vertex below the specified point, asaLoc<Di .

Note that thedi nensi ons value exported from these logically-rectilinear mesh classesis the Di mtemplate parameter for

their Ar r ay data members, such as the array of vertex-vertex mesh spacings returned by ver t exDel t as() . Thisvaueis
also the number of integers require to index a single mesh element. While the mesh class's dimension and its spatial
dimensionality are the same for logically-rectilinear meshes, an unstructured mesh might well use one-dimensional Ar r aysto
store data such as vertex positions, despite having a spatial dimensionality of three.

Itisawaysagood ideato usethet ypedef sexported by various classes when declaring objects which will befilled by return
values from those objects accessor functions, or which serve asinput for to them. For example, the input argument to

Rectil i near Mesh: :cell Containing() isRectilinearMesh: : Poi nt Type_t, sothe best way to declare
variables serving as itsinput argument is using the exported t ypedef Poi nt Type_t:

const int Dim= 3;

/1 ...unshown code to set up vertexDomai n object...

Recti |l i near Mesh<Di m» nesh(vert exDomai n);

Recti |l i near Mesh<Di me: : Poi nt Type_t poi nt;

/1 ...unshown code to set values in the coordinate vector point...
Loc<Di m» whereltsAt = nesh. cel | Cont ai ni ng(point);

Views and the Loss of Geometry Information

Fi el d and Const Fi el d support the same sort of view operations as the corresponding array classes:
operator()(Interval),read(Range),andoperator () (I nterval,int, Range) al behave asonewould
expect. However, the result of aview operation on afield is not an array, but rather a new field.

By taking aview of afield, an application is saying that it wantsto read or write part of the Fi el d'sdomain. The physical and
total domains of the view are both an | nt er val . The view copies the boundary conditions from the original field. Whether
these boundary conditions are applied or not depends on whether the view's base domain---that is, the view's domain mapped
back to the index space of the original field---touches the destination domain of one of the boundary conditions.

To make this a bit more concrete, supposethat f isaninstance of Fi el d<G T, E> for sometypesG T, and E, that cf isa
Const Fi el d<G T, E>, and that Dis a domain whose points fit inside the total domain of f and cf . Then:

o f(D) isaFi el d<G , T, E' > representing the view of f on D,

o f.read(D) isaConst Fi el d<G , T, E' > representing aread-only view of f on D,

« cf (D) isaConst Fi el d<G , T, E' > representing aread-only view of cf onD;

o cf.read(D) isaConst Fi el d<G , T, E' > representing aread-only view of cf onD;

o f.read() isaConst Fi el d<G , T, E' > representing the view of f on the physical domain PD;

o f() isaFi el d<G , T, E > representing the view of f on the physical domain PD;

o« f.readAll () isaConst Fi el d<G , T, E' > representing aread-only view of the field's total domain;

o« f.all() isaFi el d<G , T, E' > representing aview of the field's total domain;

« cf () isaConstFi el d<G , T, E' > representing aread-only view of f on the physical domain PD;

o f.array() isanArray<di mkPD>, T, E' > representing an array view of f on the physical domain PD;

o« f.oarrayAl |l () isanArray<di nxTD>, T, E' > representing an array view of f on the total domain TD;

. f.arrayRead() isaConst Array<di nkPD>, T, E' > representing aread-only array view of f on the physical
domain PD; and

. f.arrayReadAl | () isaConst Array<di nkTD>, T, E' > representing aread-only array view of f on the total
domain TD.

The exact type of the geometry G resulting from aview of aFi el d depends on the original geometry G and the domain type
D. InPOOMA 2.1, if GisaDi scret eGeonetry<Cent eri ng, Mesh>andDisanl nterval ,G will bea
Di scret eGeonet ry<Cent eri ng, MeshVi ewsMesh>> (i.e. afully-functional discrete geometry with the same

file:///E|/r2/html/tut-08.html (5 of 18) [11/1/1999 7:02:21 PM]

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

centering and a view of the part of the mesh described by the | nt er val). This works because all meshesin POOMA 2.1 are
logically rectilinear. Therefore, it is possible to deduce the connectivity of part of a mesh.

However, if Disamore complicated domain, such asaRange or indirection list, there is no sensible way to deduce
connectivity automatically, and so the notions of a mesh and centering are lost. POOMA represents this notion by introducing a
"no geometry" Geonet ry class. For al non-l nt er val -based views, G evaluatesto aNoGeonet r y<N>, where Nisthe
dimensionality.

Another complicated case is a binary operation involving two Fi el ds. If thetwo Fi el dsdo not have the same geometry,
thereis no way to know what the geometry of the resulting Fi el d should be. (Thelibrary could make an arbitrary choice,
such as always using the geometry from the left operand, but this would be wrong as often asit wasright). If thetwo Fi el ds
have the same geometry type, it is still not possible to know until run-time whether they really hold equivalent geometry
objects. Lacking a clear idea of how to construct the geometry, the library again opts for the straightforward solution of
returning aNoGeorret r y<N> geometry. Note, however, that if only one of the operandsis a Field, the library can know
unambiguously what geometry to use. Therefore, these operations preserve geometry information.

Given the complications associated with deducing the Geonet r y, one could ask why not just make the view of aFi el d an
Ar r ay? The reason is the automatic boundary condition updates discussed in the previous tutorial. If aFi el d wasalso an

Ar r ay, applications would not be able to update boundary conditions through views. It therefore makes sense that views,
along with al the other field-related entities that can find themselves at the leaf of a PETE expression tree, be Fi el ds of some
sort. Also, as ageneral rule, POOMA attempts to preserve as much information as possible when applying views.

Operations and Their Results

The rules governing the results of operationson Fi el ds are more complex than those for Ar r ays because Fi el ds
incorporate geometries. Aswith Ar r ays, all operationsinvolving at least one Fi el d resultin aFi el d. However, it isnot
always possible to preserve geometry information. The table below illustrates this, using the following declarations (where all
objects are 2-dimensional unless otherwise noted):

Fi el d<Geonetry_t, Vector<2> >f

Fi el d<Ceonetry_t> g

I nt erval <2> |

I nterval <1> J

Range<2> R

Array<2> a

It may be useful to compare this table to the one given in the second tutorial.

Operation [Example Output Type

Takingaview of |f () Fi el d<Vi ewCGeonetry_t, Vect or<2>, Bri ckVi ew<2, t rue>>

the field's physical

domain

Takingaviewof [f.all () Fi el d<Vi ewGeonetry_t, Vect or <2>, Bri ckVi ew<2, t rue>>
thefield's total

domain

Taking aview using(f (1) Fi el d<Vi ewGeonetry_t, Vect or<2>, Bri ckVi ew<2, t rue>>

an| nt erval

Taking aview using|f (R) Fi el d<NoGeonet ry<2>, Vect or <2>, Bri ckVi ew<2, f al se>>
aRange

yTaking adice yf(2, J) yFi el d<NoGeonet r y<1>, Vect or <2>, Bri ckVi ew<2, t r ue>>
Indexing (2, 3) Vect or <2>&

Taking aread-only |f . read() Const Fi el d<Vi ewCeonetry_t, Vect or<2>, Bri ckVi ew<2, t rue>>
view of thefield's

physical domain

Taking aread-only |f . readAll () Const Fi el d<Vi ewCeonetry_t, Vect or<2>, Bri ckVi ew<2, t rue>>
view of thefield's

total domain

file:///E|/r2/html/tut-08.html (6 of 18) [11/1/1999 7:02:21 PM]

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

Taking aread-only |f.read(l) Const Fi el d<Vi ewCeonetry_t, Vect or<2>, Bri ckVi ew<2, true>>
view using an
I nt erval
Taking aread-only [f.read(R) Const Fi el d<NoGeonet ry<2>, Vect or <2>, Bri ckVi ew<2, f al se>>
view using a
Range
Taking aread-only |f . read(2, J) Const Fi el d<NoGeonet ry<1>, Vect or <2>, Bri ckVi ew<2, t r ue>>
slice
Reading an element [f . r ead(2, 3) ect or <2>
Taking a f.conp(1) Fi el d<Geonetry_t, doubl e,
component view CompFwd<Engi ne<2, Vect or <2>, Bri ck>, 1>>
Taking aread-only [f . conpRead(1) Const Fi el d<Geonetry_t, doubl e,
component view CompFwd<Engi ne<2, Vect or <2>, Bri ck>, 1>>
Applyingaunary [si n(f) Const Fi el d<Geometry_t, Vect or <2>,
operator or function Expr essi onTag<Unar yNode<FnSi n,
Const Fi el d<Geonetry_t, Vect or <2>, Bri ck>>>>
Applyingabinary [f + g Const Fi el d<NoGeonet ry<2>, Vect or <2>, Expr essi onTag<
operator or function Bi nar yNode<CpAdd,
involving two Const Fi el d<Geonetry_t, Vect or<2>, Bri ck>,
Fi el ds Const Fi el d<Geonetry_t, doubl e, Bri ck>>>>
Applying abinary 2 * f Const Fi el d<Geonetry_t, Vect or <2>, Expr essi onTag<
operator or function Bi nar yNode<CpMul ti ply,
toaFi el danda Scal ar <i nt >,
scalar Const Fi el d<Geonetry_t, doubl e, Bri ck>>>>
Applyingabinary [a + f Const Fi el d<Geonetry_t, Vect or <2>, Expr essi onTag<
operator or function Bi nar yNode<CpAdd,
toaFi el d andan Const Array<2, doubl e, Bri ck>>,
Ar r ay Const Fi el d<Geonetry_t, doubl e, Bri ck>>>>

Note: If Geonetry _t isaDi scret eGeonet r y<C, M>, where Misa logically rectilinear mesh, then Vi ewGeonetry t
will bea Di scr et eGeomet r y<C, MeshVi ew<M>>,

As before, indexing produces an element type while all other operationsyield aFi el d or Const Fi el d with adifferent
engine, perhaps a different element type, and perhaps a new geometry. Const Fi el dsresult when the operation is read-only
in nature. Notice that some of the operationsreturn aFi el d with ageometry of type NoGeornet r y<N>, where Nis
dimensionality. The reason for this, and the difficulties that can ensue, were discussed earlier.

Field Stencils

The tutorial on pointwise functions introduced the St enci | classthat is used to implement point-by-point calculations on

Arrays. A closely related class called Fi el dSt enci | servesthe same purpose for Fi el ds. Its basic interface and
implementation are similar to that of St enci | , but it has specia capabilitiesto handle Fi el d's geometric properties. These
in turn imply some extra requirements on the interface of user-defined functorsfor Fi el dSt enci | .

Fi el dSt enci | classis parameterized the ssmeway as St enci | :

t enpl at e<cl ass Funct or>

struct Fiel dStencil

{
}

Any functor classthat isto serve as the template parameter to Fi el dSt enci | must have certain characteristics; in particular,
it must define an appropriate set of oper at or () methods. In order to see what these are, consider the definition of the
divergence stencil functor Di v:

t enpl at e<cl ass Qut put Cent eri ng,

cl ass Geonetry, class T>

file:///E|/r2/html/tut-08.html (7 of 18) [11/1/1999 7:02:22 PM]

file:///E|/r2/html/tut-05.html

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

class Div {};

The definition of the partial specialization in questionisgiveninsrc/ Fi el d/ Di f f Ops/ Di v. URM h, andis:

tenmplate<int DDm class T1, class T2, class Engi neTag>
class Div<Cel |,
Di screteGeonetry<Vert, RectilinearMesh<Dim Cartesian<Dinp, T1 > >,
Vector<Dim T2> >
{
public:
t ypedef Cell QutputCentering_t;
t ypedef T2 QutputEl emrent _t;

/!l Constructors.
Di v()
{
T2 coef = 1.0;
for (int d=1; d <Dm d++)
{
coef *= 0.5;

}
for (int d =0; d<Dm d++)

for (int b =0; b < (1<<Dn; b+

{
int s=(bé&(l<<d)?1: -1
Dvc_nib] (d) = s*coef;
}
}
}
/] Extents

int lowerExtent(int d) const { return O; }
i nt upperExtent(int d) const { return 1; }

/1 One dinmension

t enpl at e<cl ass F>

i nl i ne QutputEl enent _t
operator()(const F &, int i1l) const

return (dot (f(il), Dvc_n{O0]/f.geometry().nmesh().vertexDeltas()(il)) +
dot(f(il + 1), Dvc_nf{1]/f.geonetry().mesh().vertexDeltas()(il)));
}

/1 Two di nensi ons

tenpl at e<cl ass F>

i nl i ne Qutput El enent _t

operator()(const F &, int il, int i2) const

const typenanme F::Geonetry t::Mesh_ t::SpacingsArray t &D =
f.geonetry().mesh().vertexDel tas();

return (dot (f(il , 12), Dvc_mO]/vD(il, i2)) +
dot (f(il1 + 1, i2), Dve_nm1]/vD(il, i2)) +
dot (f(i1l , 12+ 1), Dvc_nm2]/vD(il, i2)) +
dot(f(il1 + 1, i2 + 1), Dvc_ni3]/vDil, i2)));

}

/! Three di nensions
t enpl at e<cl ass F>

file:///E|/r2/html/tut-08.html (8 of 18) [11/1/1999 7:02:22 PM]

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields
i nl i ne Qutput El enent _t
operator()(const F &, int il, int i2, int i3) const

const typenane F::Geonetry_t::Mesh_t:: SpacingsArray_t &D =
f.geonetry().nmesh().vertexDeltas();

return (dot(f(il , 12 , 13), Dvc_nmO]/vDXil, i2, i3)) +
dot(f(il + 1, i2 , 13), Dvc_m1]/vXil, i2, i3)) +
dot(f(i1l , 12 +1, i3), Dvc_mM2]/vXil, i2, i3)) +
dot(f(il1 + 1, i2 +1, i3), Dvc_mM3]/vXil, i2, i3)) +
dot(f(i1l , 012 , 13+ 1), Dve_nf4]/vD(il, i2, i3)) +
dot(f(il + 1, i2 , 13+ 1), Dve_nf5]/vD(il, i2, i3)) +
dot(f(i1l , i2+1, i3+ 1), Dvc_nf6]/vD(il, i2, i3)) +
dot(f(il1 + 1, i2+1, i3 + 1), Dvc_n7]/vD(il, i2, i3)));
}
private:

/] Geonetrical constants for derivatives:
Vector<bDi m T2> Dvc_nf 1<<Di n ;
s

Theoper at or () method is defined for 1, 2, and 3 integer indices. These make this functor general enough to handle all
types of input Fi el ds (whose types are instances of the member template's F parameter), aslong asthe Fi el d type's
individual elements can beindexed by 1, 2, or 3 integers. The exported typedef | nput Fi el d_t , however, restricts this
particular Di v functor to input Fi el dsusing the POOMA Di scr et eGeonetry<Vert, Recti | i near Mesh> geometry

type.

The implementations of oper at or () assume that the elemental type of theinput Fi el d isaVect or, for which the dot
product of an element with the Dvc_mmember Vect or (componentwise-divided by the local vertex-vertex mesh spacing
value) makes sense. The Dvc_mdata member is time-independent state data useful for this particular divergence stencil
implementation.

The required methods | ower Ext ent () and upper Ext ent () arevery much like their St enci | _counterparts. Because

the output Fi el d type of the Fi el dSt enci | hasadifferent centering than the input Fi el d type, however, care must be
taken when interpreting these stencil widths. In this example, the input centering is Ver t and the output centeringisCel | .
Thevalue of | ower Ext ent (d) and upper Ext ent (d) aretherefore 0 and 1 respectively, even though thisisa
centered-difference stencil, for which you might expect the lower extent to be -1 rather than zero.

To understand the values of | ower Ext ent (d) and upper Ext ent (d) for this cell-to-vertex stencil example, consider
Figure 1, which is appropriate for any single value of the argument d.

AVAYAWawS

Cell {output) indices 0 1 2 3

Vertex {input) indices

Figure 1: | ower Ext ent () and upper Ext ent () areasymmetrical in value for thisDi v stencil example even though it is
a centered difference formula, because of the centering effects on the index spaces. (The values are 0 and 1 respectively.) The
blue arrows show the pairs of input-centering-index-space indices which combine to produce a value with a single
output-centering-index-space index. The differencing is centered (combine the values from two vertices centered about each
cell center), but the index-space offsets in the input index space are asymmetrical because of the different domain sizes.

The valuereturned by | ower Ext ent (d) isthen the maximum positive integer offset from the element indexed by integer i
intheinput Fi el d'sindex space along dimension d used in outputting the element indexed by integer i inthe output Fi el d's
index space along dimension d. The (physical) domains of the input and output Fi el dsalong each dimension are of different

file:///E|/r2/html/tut-08.html (9 of 18) [11/1/1999 7:02:22 PM]

file:///E|/r2/html/tut-05.html#extents

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

lengths (because there is one more vertex than cell center along adimension), so it isimportant to think carefully about what
thisimplies about the stencil-width methods and the implementation of the oper at or () methods.

Applications can construct Fi el dSt enci | functorsthat are parameterized on functors such asthe Di v functor above, then
invoke them viaFi el dSt enci | : : oper at or () inthe sameway aswas done with the St enci | <Lapl aceSt enci | >
functor inthe Ar r ay St enci | example:

/1 Create the geonetries, assuming RectilinearMesh object nesh:
typedef RectilinearMesh<Dim Cartesian<D nm> > Mesh_t

Di screteGeonetry<Vert, Mesh_t> geonv(nesh, GuardLayers<Di np(1));
Di screteGeonetry<Cel |, Mesh_t> geont(nesh, GuardLayers<Di nk(1));

/1 Make the Fields (default EngineTag type):
Fi el d<Di scret eGeonetry<Vert, Mesh_t>, Vector<Di nr > vv(geonv);
Fi el d<Di scret eGeonmetry<Cel |, Mesh_t>, double > sc(geont);

/1 Make the divergence FieldStencil object, using the Div class defined above:
typedef Div<Cell, DiscreteGeonetry<Vert, Mesh_t>, Vector<Dint > Div_t;
Fi el dStencil <Di v_t> di vW2SC() ;

/1 Divergence, Vector/Vert-->Scal ar/ Cel |
sc = divVv2SC(fv);

Programmers may also find it convenient to create wrappers by defining global template functions which internally construct
appropriate Fi el dSt enci | <cl ass St enci | > objects, likethedi v() function described above.

More on Boundary Conditions

Whenever POOMA encounters a data-parallel expression involving fields, boundary conditions may be applied. However,
POOMA tries to ensure that these cal culations are only done when absolutely necessary. Before evaluating an expression,
POOMA asks each of the boundary conditions for each of the fields on the right-hand side of an assignment operator whether
the source domain has been modified since the last time the boundary condition has been evaluated, and whether the domain
for the data parallel expression touches the destination domain. The boundary condition is re-computed only if both of these are
true. Otherwise, evaluation proceeds directly to the data-parallel expression.

Delaying evaluation in this way can forestall alot of unnecessary calculation. The price for thisisthat programmers must be
careful when writing scalar code, because scalar expression evaluation does not automatically trigger the update of field
boundary conditions. To force calculation of al of afield's boundary conditions explicitly, an application must call the method
Fi el d: : appl yBoundar yCondi ti ons() . In particular:

« when reading from values in the destination domains of the boundary conditions, call
appl yBoundar yCondi ti ons() beforethe scalar loop; and

« when writing to values in the source domains, call appl yBoundar yCondi ti ons() after the scalar loop.

In addition, boundary conditions are not automatically evaluated before afield is printed. Applications should therefore call
appl yBoundar yCondi ti ons() before output statements to ensure that the boundary values displayed are up to date..

Using Pre-Built Boundary Conditions

POOMA includes a number of pre-built boundary conditions for use with fields and the supplied rectilinear meshes. For
example, the following code sets the guard layers of aDi mdimensional field f to zero:

for (int d=0; d<2* Dm d++)

f . addBoundar yCondi ti on(Zer oFaceBC(d)) ;
}

All of the pre-built boundary conditions apply themselves to a particular face of the rectilinear computational domain. For each
component direction, thereis ahigh and alow face. For aDi mdimensiona field, faces are numbered consecutively from O to
2*Di m 1. Thefacesfor each axis are numbered consecutively, with the low face having the lower (even) number. Thus, the

file:///E|/r2/html/tut-08.html (10 of 18) [11/1/1999 7:02:22 PM]

file:///E|/r2/html/tut-05.html#stenciluse

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

coordinate direction and whether the face is the high or low faceis calculated as follows:
int direction = face / 2;
bool isHi gh = (face & 1);

The high facein the Y direction therefore has a face index of 3 (second axis, second face).

The pre-built boundary conditions supported by POOMA are:
« Const ant FaceBC<T>(int face, T constant, bool enforceConstantBoundary = fal se);
o Linear Extrapol at eFaceBC(i nt face);

« NegRefl ect FaceBC(int face, bool enforceZeroBoundary = false);
o Periodi cFaceBC(int face);
- PosRefl ect FaceBC(int face, bool enforceZeroBoundary = false);

o ZeroFaceBC(int face, bool enforceZeroBoundary = false);

Const ant FaceBC<T> represents a Dirichlet boundary condition on adomain (i.e. one which keeps the value on that face
constant). The constructor switch enf or ceConst ant Boundar y allows the boundary condition to enforce that the
mesh-boundary value is constant, i.e. to determine whether the boundary condition writes into the guard layers, or into the
actual physical domain. This affects only vertex-centered field val ues/’components because the boundary is defined to be the
last vertex. The T template parameter is the type of the constant value.

Li near Ext r apol at eFaceBC takesthe values of the last two physical elements, and linearly extrapolates from the line
through them out to all the guard elements. This is independent of centering. Like the other boundary conditionsin this release
of POOMA, it applies only to logically rectilinear domains.

NegRef | ect FaceBC represents an antisymmetric boundary condition on alogically rectilinear domain where the value on
that face is assumed to be zero. As with the Const ant FaceBC boundary condition, the constructor switch

enf or ceZer oBoundar y alowsthe boundary condition to enforce that the boundary value is zero. This affects only
vertex-centered field values/components because the boundary is defined to be the last vertex.

Per i odi cFaceBC represents a periodic boundary condition in one direction of alogically rectilinear domain.

PosRef | ect FaceBC represents a symmetric boundary condition on alogically rectilinear domain; the face itself may take
on any value. The constructor switch enf or ceZer oBoundar y alows the boundary condition to enforce that the boundary
valueis zero. This affects only vertex-centered field values/components because the boundary is defined to be the last vertex.

Zer oFaceBC represents a zero Dirichlet boundary condition on alogically rectilinear domain. The constructor switch
enf or ceZer oBoundar y alowsthe boundary condition to enforce that the mesh-boundary value is zero. This affects only
vertex-centered field values/components because the boundary is defined to be the last vertex.

Setting Boundary Conditions on Components

Applications often need to apply different boundary conditionsto different components of aVect or or Tensor field. In
POOMA, thisis accomplished using the Conponent BC adaptor, which works by taking a component view of the field and
then applying the specified boundary condition to that view. Consider the example:

/1 Create the geonetry.
typedef RectilinearCentering<D, VectorFaceRCTag<D> > Centering_t;
Di screteCGeonetry<Centering t, UnifornRectilinear Mesh<D> >

geom(nesh, CQuardLayers<D>(1));

/1 Make the field.
Fi el d<Di scret eGeonetry<Centering_t, UnifornRectilinearMesh<D> >, Vector<D> >
f(geom;

/1 Add conponentw se boundary conditi ons.
t ypedef Conponent BC<1, NegRef| ect FaceBC> NegRef | ect Face_t;
typedef Conponent BC<1, PosRef| ect FaceBC> PosRef | ect Face_t;
for (int face = 0; face < 2 * D; face++)

file:///E|/r2/htmi/tut-08.html (11 of 18) [11/1/1999 7:02:22 PM]

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

{
int direction = face / 2;
for (int ¢ =0; ¢c <D, c++)
{
if (c == direction)
f . addBoundar yCondi ti on(NegRef | ect Face_t(c, face));
el se
f . addBoundar yCondi ti on(PosRef | ect Face_t(c, face));
}
}

This adds 2D2 boundary conditions for each of the D components at the high and low faces in each of the D coordinate
directions. The Conponent BC classistemplated on the number of indices (1 for Vect or sand 2 for Tensor s) and the
boundary condition category (e.g., PosRef | ect FaceBC). The constructor arguments are the 1 or 2 indices specifying the
components followed by the constructor arguments for the boundary condition.

Boundary Condition Initialization Functors

It is often easiest for an application to set all of afield's boundary conditions at once. POOMA supports this by allowing
boundary conditions to be initialized using a functor, asin:

f . addBoundar yCondi ti ons(Al | Zer oFaceB(()) ;

This sets zero boundary conditions for all faces and components of the field f in asingle statement. (Note the's at the end of
the method name addBoundar yCondi t i ons()). The definition of the functor Al | Zer oFaceBCissimply:

cl ass Al | Zer oFaceBC

{
publ i c:
Al | Zer oFaceBC(bool enforceZeroBoundary = fal se)
ezb_m(enf or ceZer oBoundary) { }
t enpl at e<cl ass Geonetry, class T, class Engi neTag>
voi d operator () (Fiel d<Geonetry, T, EngineTag> &) const
{
for (int i =0; i <2 * Geonetry::dinmensions; i++)
f . addBoundar yCondi ti on(Zer oFaceBC(i, ezb m);
}
}
private:
bool ezb m
b

Constructor arguments for the individua boundary conditions are specified when constructing the functor. The actual boundary
conditions are added in the functor'soper at or () method, which iscalled internally by the field.

This release of POOMA predefines the functors listed below. Their effects can be inferred by comparing them with the the
boundary conditions given in the previous table.

o Al'l Const ant FaceBC<T>(T constant, bool enforceConstantBoundary = fal se);

« Al Li near Extrapol at eFaceBC() ;

o Al'l NegRefl ect FaceBC(bool enforceZeroBoundary = fal se);

o All Periodi cFaceBC();

o Al'l PosRefl ect FaceBC(bool enforceZeroBoundary = fal se);

o Al'l Zer oFaceBC(bool enforceZeroBoundary = fal se);

file:///E|/r2/htmi/tut-08.html (12 of 18) [11/1/1999 7:02:22 PM]

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

Writing Boundary Conditions

In order to add a new type of boundary condition for POOMA, an application must define two classes: a boundary condition
category, and the boundary condition itself. The boundary condition category classis the user interface for the boundary
condition, and is simply alightweight functor. (Classes like Const ant FaceBC<T> are boundary condition category classes
of thiskind.) For example, a boundary condition category for the following spatially-dependent two-dimensional boundary
condition:

f(face) = 100 * x(face) * y(face)

could be written as;

class PositionFaceBC : public BCondCat egory<Positi onFaceBC>
{
publi c:

Posi ti onFaceBC(i nt face)

. face_n(face)

{}

int face() const

{

return face m

}

private:
int face_m
1

Notice that the class inherits from a version of BCondCat egor y templated on itself, but is otherwise quite straightforward.

The actual boundary condition is a specialization of the BCond class, which has the general template definition:

t enpl at e<cl ass Subj ect, class Category>
cl ass BCond;

The Subj ect istheclass of field that the boundary condition is to be applied to. POOMA needs to know this type exactly
because it must be able to apply the boundary condition using PETE's data-parallel machinery.

To continue with the previous example, a specialization for the spatially-dependent boundary condition that is appropriate for
two-dimensional multi-patch fieldsis:

typedef Field<
Di screteGeonetry<Vert, UniformnmRectilinear Mesh<2> >,
doubl e, Multi Patch<UnifornTag, Brick> > FieldType_t;

t enpl at e<>

cl ass BCond<Fi el dType_t, PositionFaceBC :
public Fi el dBCondBase<Fi el dType_t >

{

publi c:
/1 Constructor conputes the destination domain
BCond(const Fi el dType_t &f, const PositionFaceBC &bc)
Fi el dBCondBase<Fi el dType_t>(f, f.total Domain())

{
int d = bc.face() / 2;
int hi Face = bc.face() & 1;
int |ayer;
i f (hiFace)
{

file:///E|/r2/html/tut-08.html (13 of 18) [11/1/1999 7:02:22 PM]

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

| ayer = destDonmin()[d].last();

}
el se
{
| ayer = destDonmain()[d].first();
}
destDomai n()[d] = Interval <1>(layer, |ayer);

}

voi d appl yBoundar yCondi ti on()

subj ect () (dest Domai n()) = 100.0 * subject().x(destDomain()).conp(0) *
subj ect (). x(dest Domai n()).conp(1);

}
BCond<Fi el dType_t, PositionFaceBC> *retarget (const FieldType t &) const
{
return new BCond<Fi el dType_t, PositionFaceBC(f, bc_m;
}

b

This could obviously be written more generally, but is sufficient to illustrate the concepts. Notice that thisis afull
specialization of the BCond template. Such specializations must inherit from the base class Fi el dBCondBase, which is
templated on the field type.

The constructor for Fi el dBCondBase takes up to three arguments: the field, theinitia value of the destination domain, and
theinitial value of the source domain. The last two domain arguments are optional. If they are not specified, the domains are
initialized to be empty. The field argument can be subsequently accessed using the subj ect () member, the destination
domain can be accessed using the dest Donmai n() method, and the source domain can be accessed using the sr cDonai n()
method.

The destination domain is the domain that fully bounds the region where the boundary condition is setting values. The source
domain bounds the region where the boundary condition gets values to compute with. In this example, the destination domain
isthe single guard layer outside the physical domain for the specified face. Thereis no source domain because the destination
values are not computed using other values. Thisis not the case with, for instance, the Per i odi cFaceBC boundary
condition, where periodicity is enforced by copying values from one place to another.

In many cases, the source and destination domains exactly define where values are read from, and where they are written.
However, it isimportant to realize that POOMA treats these as bounding boxes. This means that for fields based on rectilinear
meshes, the types of these domainswill bel nt er val <Geonret ry: : di mensi ons>. If aboundary condition doesn't write
or read from domains specified by an | nt er val (e.g., aRange), thisdomain must be computed and stored specially.

For example, suppose an application had a boundary condition that set every other point in the guard layers. The destination
domain member dest Domai n() would still return an | nt er val , sinceit represents a bounding box, not the actual domain.
These two entities are the same for all of the boundary conditions that this release of POOMA contains; however, future
versions may relax this constraint.

In addition to a constructor, a boundary value class must have a method called appl yBoundar yCondi ti on() , which must
contain the code that actually evaluates the boundary condition, and amethod called r et ar get () , which makes a new
boundary condition using a different subject and the internal data of the current object. The example above uses straightforward
data-parallel to syntax apply the boundary conditions. More sophisticated examples are included in the sr ¢/ BConds

directory in the release.

Associating Boundary Conditions with Operators
By default, POOMA associates boundary conditions with fields. This was done to alow automatic computation of boundary

conditions and for compatibility with POOMA R1. An alternative approach is associating boundary conditions with operators.
The source code below, taken from exanpl es/ Fi el d/ Lapl ace2, illustrates how thisis done:

001 #include "Poonw/ Fi el ds. h"
002 #include "Uilities/dock.h"

file:///E|/r2/html/tut-08.html (14 of 18) [11/1/1999 7:02:22 PM]

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

003

004 #include <iostreanr

005

006 // Convenience typedefs.
007

008 typedef ConstField<

009 Di screteGeonetry<Vert, UnifornRectilinearMesh<2> > > ConstFiel dType_t;

010
011 typedef Field<

012 Di screteGeonetry<Vert, UnifornRectilinearMesh<2> > > Fiel dType_t;

013
014 // The boundary condition.
015

016 class PositionFaceBC : public BCondCat egory<Positi onFaceBC>

017 {

018 public:

019

020 Posi ti onFaceBC(i nt face) : face_
021

mface) { }

022 int face() const { return face_m }

023

024 private:

025

026 int face_m
027 };

028

029 tenpl ate<>

030 class BCond<Fi el dType_t, PositionFaceBC>

031 . public Fiel dBCondBase<Fi el dType_t >

032 {

033 public:

034

035 BCond(const Fiel dType_t &f, const PositionFaceBC &bc)
036 . Fi el dBCondBase<Fi el dType_t >

037 (f, f.total Domain()), bc_mbc) { }

038

039 voi d appl yBoundar yCondi ti on()

040 {

041 int d =bc_mface() / 2;

042 int hilo = bc_mface() &1

043 int |ayer;

044 I nt erval <2> donmai n(subj ect().total Domain());

045 if (hilo)

046 | ayer = domain[d].last();

047 el se

048 | ayer = domain[d].first();

049

050 domai n[d] = Interval <1>(l ayer, |ayer);

051 subj ect () (domain) = 100.0 * subject().x(domai n).conp(0) *
052 subj ect (). x(dorai n).conp(1);

053 }

054

055 BCond<Fi el dType_t, PositionFaceBC> *retarget(const FieldType t &) const
056 {

057 return new BCond<Fi el dType_t, PositionFaceBC(f, bc_m;
058 }

059

060 private:

061

file:///E|/r2/htmi/tut-08.html (15 of 18) [11/1/1999 7:02:22 PM]

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

062 Posi ti onFaceBC bc_m

063 };

064

065 // The stencil

066

067 class Lapl aci an

068 {

069 public:

070

071 typedef Vert QutputCentering t;
072 t ypedef doubl e Qut put El enent _t;

073

074 int |lowerExtent(int) const { return 1; }

075 int upperExtent(int) const { return 1; }

076

077 t enpl at e<cl ass F>

078 i nl i ne QutputEl enent _t

079 operator()(const F &, int i1, int i2) const
080

081 return 0.25 * (f(il + 1, i2) +f(i1- 1, i2) +
082 f(i1, i2+1) +f(i1, i2- 1));

083 }

084

085 t enpl at e<cl ass F>
086 static void appl yBoundaryConditions(const F &f)

087 {

088 for (int i =0; i < 4; i++4)

089 {

090 BCondl tem *bc = PositionFaceBC(i).create(f);
091 bc- >appl yBoundar yCondi ti on() ;

092 del ete bc;

093 }

094 }

095 };

096

097 wvoid appl yLapl aci an(const Fi el dType_t &, const FieldType_t &f)
098

099 Lapl aci an: : appl yBoundar yCondi ti ons(f);

100 | = FieldStencil<Lapl acian>()(f);

101 }

102

103 int rmain(

104 int argc,

105 char *argv[]

106) {

107 /1 Set up the library

108 Pooma: :initialize(argc, argv);

109

110 /1l Create the physical donmains:

111

112 /1 Set the dinensionality:

113 const int nVerts = 100;

114 Loc<2> center(nVerts / 2, nVerts / 2);

115 I nt erval <2> vertexDomai n(nVerts, nVerts);

116

117 /] Create the (uniform logically rectilinear) nesh.
118 Vector<2> origin(1.0 / (nVerts + 1)), spacings(1.0 / (nVerts + 1));
119 typedef UnifornRectilinear Mesh<2> Mesh_t;

120 Mesh_t nmesh(vertexDonmain, origin, spacings);

file:///E|/r2/htmi/tut-08.html (16 of 18) [11/1/1999 7:02:22 PM]

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170 }

[/l Create a geonetry object with 1 guard |ayer to account for

/1 stencil wdth:

typedef DiscreteGeonetry<Vert, UnifornRectilinearMesh<2> > Geonetry t;
Ceonetry_t geom(nmesh, GuardLayers<2>(1));

/!l Create the Fields:

/1 The voltage v(x,y) and a tenmporary vTenp(Xx,Yy):
Fi el dType_t v(geom), vTenp(geon);

[l Start timng:
Poonm: : d ock cl ock;
doubl e start = cl ock. val ue();

/1 Load initial condition v(x,y) = 0:
v = 0.0;

/] Performthe Jacobi iteration. W apply the Jacobi forrmula tw ce
/1 each | oop:
doubl e error = 1000;
int iteration = O;
while (error > le-6)
{

iteration++;

appl yLapl aci an(vTenp, V);
appl yLapl aci an(v, vTenp);

/[l The analytic solution is v(x, y) = 100 * x * y so we can test the
/1l error:

/1 Make sure cal cul ations are done prior to scalar cal cul ations.
Pooma: : bl ockAndEval uat e() ;

const doubl e sol ution v(center);

const double analytic 100.0 * v.x(center)(0) * v.x(center)(1);
error = abs(solution - analytic);

if (iteration % 1000 == 0)

std::cout << "lteration: " << iteration << "; "
<< "Brror: " << error << std::endl;
}
std::cout << "Wall clock tinme: " << clock.value() - start << std::endl;

std::cout << "lteration: << iteration << "; "
<< "Error: " << error << std::endl;

Pooma: : finalize();
return O;

Thisisasimple Jacobi saolver for Laplace's equation using the Posi t i onFaceBC boundary condition discussed above.
Lines 110-130 set up the mesh, the geometry, and the Br i ck-engine-based Fi el d. Notice that we do not add any boundary
conditions to this field, but we do reserve one layer of external guard layers (line 125) Wethen initialize the Fi el d v and
begin iterating. Since we need atemporary field to store the result of the Laplacian stencil, we can efficiently perform two
applications of the stencil for each loop (lines 147 and 148). We know that the analytic solution of this problem isv(x, y) = 100
X'y, SO we can monitor and report the error in lines 156-161. Finally, we use the POOMA Cl ock class to monitor wall-clock
time (lines 132-134 and 164).

file:///E|/r2/htmi/tut-08.html (17 of 18) [11/1/1999 7:02:22 PM]

POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields

Thefunction appl yLapl aci an (lines97-101) takesaFi el d to assignto and aFi el d to stencil asarguments. Thisis
where the boundary conditions are applied, follwed by the stencil. The Fi el d stencil object Lapl ace is straightforward,
except for the static function appl yBoundar yCondi t i ons that, on the fly, creates boundary conditions for each face of
theinput field f and applies them.

Future versions of POOMA will better support this paradigm of associating boundary conditions with operators.

Summary

Fields are among the most important structures in physics, and POOMA's Fi el d classes are one of the things that make it
more than just another array package. While the facilities introduced in this tutorial and the preceding one are more complex

than some other parts of POOMA, all of their complexity is necessary in order to give applications programmers both
expressive power and high performance.

[Prev] [Home] [Next]

Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/tut-08.html (18 of 18) [11/1/1999 7:02:22 PM]

http://www.acl.lanl.gov/pooma/

POOMA Tutorial 9: Particles

Parallel Object-Oriented
Methods.and Applications™

POOMA Tutorial 9
Particles

Contents:
Introduction
Overview
Attributes
Layout
Derivation
Synchronization and Related | ssues
Example: Simple Harmonic Oscill ator
Boundary Conditions
Example: Elastic Collision

Summary

Introduction

Particles are primarily used in one of two ways in large scientific applications. The first isto track sample particles using Monte
Carlo techniques, for example, to gather statistics that describe the conditions of a complex physical system. Particles of thiskind
are often referred to astracers. The second is to perform direct numerical simulation of systems that contain discrete point-like
entities such asions or molecules.

In both scenarios, the application contains one or more sets of particles. Each set has some data associated with it that describes its
members' characteristics, such as mass and charge. Particles typically exist in a spatial domain, and they may interact directly with
one another or with field quantities defined on that domain.

Thistutorial gives an overview of POOMA's support for particles, then discusses some implementation details. The classes
introduced in thistutorial areillustrated by two short programs: one that tracks particles under the influence of asimple
one-dimensional harmonic oscillator potential, and another that model s particles bouncing off the walls of a closed
three-dimensional box. The next tutorial then shows how particles and fields can be combined to create complete simulation

applications.

Overview

POOMA'sPart i cl es classisacontainer for a heterogeneous collection of particle attributes. The class uses dynamic storage for
particle data (in the form of Dynam cAr r ays), so that particles can be added or deleted as necessary. It contains alayout object
that manages the distribution of particle data across multiple patches, and it applies boundary conditions to particles when attribute
data values exceed a prescribed range. In addition, global functions are provided for interpolating data between particle and field
element positions.

Each Par ti cl es object keegpsalist of pointersto its elements attributes. When an application wantsto add or delete a particle, it
invokes amethod onthe Par t i cl es object, which delegates the call to the layout object for the contained attributes.

Parti cl es aso provides amember function called sync() , which the application invokes in order to update the particle count
and data distribution across contexts and to apply the boundary conditions.

Applications can define a new type of particles collection by deriving from the Par t i ¢l es class. The derived class declares data
members for the attributes needed to characterize this type of particle; the types of these data members are discussed below. The

constructor for thisclasscallsParti cl es: : addAt t ri but e to register each attribute and add it to the list. In thisway, the
Parti cl es classcan be extended by the application to accommodate any sort of particle description.

file:///E|/r2/html/tut-09.html (1 of 12) [11/1/1999 7:02:31 PM]

POOMA Tutorial 9: Particles

The distribution of particle data stored in Dynani cAr r aysisdirected by a particle layout class. (The details of the mechanism
used to specify layout and other information for Par t i cl es classes are discussed below.) Each particle layout class employs a
particular strategy to determine the patch in which a particle's data should be stored. For instance, Spat i al Layout keepseach
particle in the patch that contains field data for elements that are nearest to the particle's current spatial position. This strategy is
useful for cases where the particles need to interact with field data or with particles nearby to them.

Attributes

Each particle attribute isimplemented as a Dynani cAr r ay, aclass derived from the one-dimensional specialization of POOMA's
Ar r ay class. Dynami cAr r ay extends the notion of a one-dimensional array to allow applications to add or delete elements at
will. When particles are destroyed, the empty slots left behind can be filled by moving elements from the end of the list (backfill) or
by dliding al the remaining elements over and preserving the existing order (shift up). At the sametime, Dynani cAr r ays can be
used in data-parallel expressionsin the same way as ordinary Ar r ay's, so that the application can update particle attributes such as
position and velocity using either a single statement or aloop over individual particles.

At first glance, it might seem more sensible to have applications define atype T that stores all the attribute data for one particlein a
single data structure, and then use this as atemplate argument to the Par t i cl es class, which would store aDynarmi cAr r ay of
values of this type. POOMA's designers considered this option, but discarded it. The reason is that most compute-intensive
operations in scientific applications are implemented as |oops in which one or more separate attributes are read or written. In order
to make the evaluation of expressions involving attributes as efficient as possible, it is therefore important to ensure that data are
arranged as separate one-dimensional arrays for each attribute, rather than as a single array of structures with one structure per
particle. This arrangement makes common cases such as:

for (int i=0; i<n; ++i)
{
X[i] +=dt * vx[i];
y[i] +=dt * vy[i];
}

run more quickly, as it makes much better use of the cache.

Layout

As mentioned above, each Par t i cl es object uses alayout object to determine in which patch a particle's data should be stored.
The layout manages the program's requests to re-arrange particle data. With Spat i al Layout , for example, the application
provides a particle position attribute which is used to determine how particle data should be distributed. The particle layout then
directsthePar t i cl es object to move particle datafrom one patch to another as dictated by its strategy. The Par t i cl es object
in turn delegates this task to the layout object for the particle attributes, which tells each of the attributes using this layout to move
their data as needed. All of thisishandled by asinglecal toParti cl es:: sync(),whichinturncalsParticl es:: swap()
to actually move particle data around.

Derivation

In general, creatinganew Par ti cl es classis athree-step process. Thefirst step isto declare atraits classwhoset ypedef s
specify the type of engine the particle attributes are to use and the way the data for those attributes isto be distributed. An example
of such atraits classis the following:

struct MyParticleTraits

{

typedef Milti Patch<GidTag, Bri ck> Attri but eEngi neTag_t;
t ypedef UnifornlLayout Particl eLayout t;

b

Thistraits class will be used to specializethe Par t i cl es class template when an application class representing a concrete set of
particlesis derived fromit. Par t i cl es usespublict ypedef sto give sensible namesto these traits parameters, so that the
derived application-level class can access them (as shown below). For the application devel oper's convenience, a set of pre-defined
particle traits classes with specific choices of attribute engine and particle layout type are provided in the header file

src/ Particl es/ CormonParticl eTraits. h. These define combinations of shared brick and multi-patch brick engines
with both uniform and spatial layouts, and include the following:

file:///E|/r2/html/tut-09.html (2 of 12) [11/1/1999 7:02:31 PM]

POOMA Tutorial 9: Particles

Name Attri but eEngi neTag_t Parti cl eLayout _t

Shar edBri ckUni f orm Shar edBri ck Uni f or mLayout

Shar edBri ckSpati al Shar edBri ck Spati al Layout <

<Cent, Mesh, Fi el dLayout > Di scret eGeonetry<Cent, Mesh>,
Fi el dLayout >

MPBri ckUni f orm Mul ti Pat ch<Gri dTag, Bri ck> Unif or mnLayout

MPBri ckSpati al Mul ti Pat ch<Gri dTag, Bri ck> Spati al Layout <

<Cent, Mesh, Fi el dLayout > Di scr et eGeonetry<Cent, Mesh>,

Fi el dLayout >

The Shar edBri ck enginetypeisjust like Bri ck, except that the engine's layout can be shared by other engines constructed with
the same layout argument. The effect of thisisthat the layout of all of the attributes remains synchronized. Shar edBr i ck should
only be used when running serially; otherwise, applications should use Mul t i Pat ch.

The second step isto derive aclassfrom Par t i cl es. The new class can be templated on whatever the devel oper desires, aslong
asatraits class type is provided for the template parameter of the Par t i cl es base class. In the example below, the new class
being derived from Par t i cl es istemplated on the sametraitsclassasPar t i cl es. For the sake of convenience, t ypedef s
may be provided for the instantiated parent class and for its layout type. The constructor for the application class then usually takes
aconcrete layout object of the type specified inthet ypedef above as a constructor argument:

tenpl ate <cl ass PT>
class MyParticles : public Particl es<PT>
{
publi c:
/1 instantiated type of parent class
typedef Particl es<PT> Base_t;

/1l type of layout (fromtraits class via parent class)
typedef typenane Base_t::ParticlelLayout_t ParticlelLayout _t;

/1 type of attribute engine tag (fromtraits class via parent class)
typedef typenane Base_t:: Attribut eEngi neTag_t EngineTag_t;

/'l sone particle attributes as public data menbers
Dynani cAr ray<doubl e, Engi neTag_t > charge;

Dynami cArray<doubl e, Engi neTag_t > mass;

Dynani cArray<i nt, EngineTag t> count ;

/1 constructor invokes Particles(layout) to cache | ayout
MyParticl es(const Particl eLayout _t & ayout)

. Particl es<PT>(I| ayout)

{

/1 register attributes
addAttri but e(charge);
addAttri but e(nmass);
addAttri but e(count);
}
b

Note that the attribute elements in this example have different element types, i.e., char ge and mass aredoubl e, whilecount is
i nt . Attribute elements may in general have any type, including any user-defined type.

Finally, the application class MyPar t i cl es isinstantiated with thetraitsclassMyPar t i cl eTr ai t s to create an actual set of
particles. An actual layout is declared first, and it is passed as a constructor argument to the instance of the application-level classto
control the distribution of particle data between patches. This layout object typically has one or more constructor arguments that
specify such things as the number of patches the particles are to be distributed over:

int main()

file:///E|/r2/html/tut-09.html (3 of 12) [11/1/1999 7:02:31 PM]

POOMA Tutorial 9: Particles

{
const int nunPatches = 10;
MyParticleTraits:: Particl eLayout t |ayout (nunPatches);
MyParticl es<MyParticl eTraits> particles(layout);
}

While this may seem complex at first, each level of indirection or generalization is needed in order to provide flexibility. The type
of engine and layout to be used, for example, could be passed directly as template parametersto Par t i cl es, rather than being
combined together in atraits class. However, this would make user-level code fragilein the face of future changesto the library: if
other traits are needed later, they can be added to the traits class in one place, rather than needing to be specified every time
something is derived from Par t i cl es. Thisbundling also makes it easier to specify the same basic properties (engine and layout)
for two or more interacting Par t i cl es-derived classes.

Synchronization and Related Issues

For efficiency reasons, Par t i cl es does not automatically move particle data between patches after every operation, but instead
waits for the application to call the method sync() . Par ti cl es can aso be configured to cache requests to delete particles,
rather than deleting them immediately.

Particl es::sync() isamember template, i.e, it istemplated on its single argument. This argument must be one of the
particle set's attributes. Spat i al Layout assumesthat the attribute givento sync() isthe particles positions, and usesit to
update the distribution of particle data so that particles are located on the same patch as nearby field data. Applications must
therefore be careful not to mistakenly pass a non-spatial attribute, such as temperature or pressure, to Spat i al Layout .

Uni f or mLayout , which divides particles as evenly as possible between patches, without regard for spatial position, only usesthe
attribute passed to sync() asatemplate for the current distribution of particle data. Any attribute with the same distribution as the
actual particle data can therefore be used.

Theuse of aparameterinParti cl es: : sync() isoneimportant difference between the implementation of particlesin this
version of POOMA and its predecessor. In the old design, al Par t i cl es classes came with a pre-defined attribute R that was the
particles position, which synchronization always referred to. The new scheme allows applications to switch the attribute that is used
to represent the position, e.g., to switch back and forth between a " current” position attribute cur r pos and a"new" position
attribute newpos. It also allows particles to be weighted according to some attribute, so that the distribution scheme load-balances
by weight.

Of course, before particle data can be (re-)distributed, the particles themselves must be created. Par t i cl es provides two methods
for doing this. Thefirst, gl obal Cr eat e(num r enumn) , creates a specified number of particles, spread as evenly as possible
across all patches. The particles are normally renumbered after the creation operation, although this can be overridden by passing

f al se asasecond parameter to the method.

Particles::create(num patch, renumn,ontheother hand, creates a specified number of particles within the local
context, and adds them to either the last local patch (if the pat ch argument is negative) or to a specific patch (if pat ch is
non-negative). The particles are renumbered after this operation unlessf al se is passed as a third parameter to this method.

After particles have been created (or destroyed), they must be renumbered to ensure that each has aunique ID. In general, the

r enunber () method surveys al the patches to find out what the current local domain of each patch is. It then reconstructs a
global domain across all the patches, effectively renumbering the particles from 0 to N-1, where N is the total number of particles.
The more complex sync() method applies the particle boundary conditions, performs any deferred particle destroy requests,
swaps particles between patches according to the particle layout strategy, and then renumbers the particles by caling

r enunber () . Programs should therefore call r enunber () if they have only created or destroyed particles, but have not done
deferred destroy reguests, modified particle attributesin away that would require applying boundary conditions (or have no
boundary conditions), and do not need to swap particles.

If aprogram does not (implicitly or explicitly) call r enunber () after creating or destroying particles, the global domain for the
particleswill be incorrect. If the program then tries to read or write aview of a particle attribute by indexing with some domain
object, it will not get the right section of the data. This failure could be silent if the view that the program requests exists.
Alternatively, the requested view could be outside of the global domain (becauser enunber () was not called to update the global
domain), in which case the layout object for the particle attribute will suffer arun-time assertion failure.

There are also two ways to destroy particles. The first way, which always destroys the particlesimmediately, is implemented by the
method Par ti cl es: : destroy(domai n, patchld, renun).Ifthepat chl d parameter isnegative (whichisthe
default), the domai n isassumed to specify a global numbering of particles. If pat chl d isnon-negative, then domai n is assumed
to be aloca numbering for that patch, i.e., onein which the first particle in the patch hasindex O.

file:///E|/r2/html/tut-09.html (4 of 12) [11/1/1999 7:02:31 PM]

POOMA Tutorial 9: Particles

Since this method modifiesthe Par t i cl es object right away, the default behavior of this method is to renumber particles after it
has finished destroying the specified particles. This can be overridden by passing f al se asthe last parameter to the call.

The second particle destruction method isPar ti cl es: : def err edDest roy(domai n, patch). T Thisisnew inthisrelease,
and only does deferred destruction, i.e., only caches the requested indices for use later when per f or nDest r oy () iscaled.
(Since this method doesn't actually destroy particles right away, thereisno need for it to call r enunber () . The

per f or mDest r oy () method, which causes the cached destruction requests to be executed, always performs renumbering.)

Asnoted above, Parti cl es: : gl obal Creat e() normaly callsr enunber () to update the global domain of the particle
attributes after the particles have been created, but before the program tries to do computations involving their attributes. The reason
for thisisthat while gl obal Cr eat e() alocates space for the new particle data and updates the local domain of the patch or
patches on which creation was done, the global domain across al the patches of datais not updated until the call tor enunber () .
If the global domain is not up to date, the program cannot correctly access the ith particle's data or evaluate a data-parallel
expression.

Example: Simple Harmonic Oscillator

The example for this tutorial simulates the motion of particles under the influence of a simple one-dimensional harmonic oscillator
potential. The code, which isincluded in thereleaseinthe exanpl es/ Parti cl es/ Gsci | | at i on directory, isasfollows:

001 #include <iostreanr

002 #include <stdlib. h>

003

004 #i ncl ude "Poome/ Particl es. h"

005 #include "Pooma/ Dynani cArrays. h"

006

007 // Dinmensionality of this problem

008 static const int PDim= 1;

009

010 // Atraits class specifying the engine and |ayout of a Particles class.
011 tenplate <class Engi neTag>

012 struct PTraits

013 {

014 /1 The type of engine to use in the particle attributes.
015 typedef Engi neTag Attri but eEngi neTag_t;

016
017 /1l The type of particle layout to use. Here we use a Uniformayout,
018 /1 which divides the particle data up so as to have an equal nunber

019 /1 on each patch.

020 typedef UnifornlLayout Particl eLayout _t;

021 };

022

023 // A Particles subclass that defines position and velocity as
024 // attributes.

025 tenplate <class PT>

026 class Quanta : public Particl es<PT>

027 {

028 public:

029 /1 Useful things to extract fromthe base class

030 typedef Particl es<PT> Base t;

031 typedef doubl e Axi sType_t;

032 typedef typenane Base t::ParticlelLayout t Particl eLayout t;
033 typedef typenane Base_t::AttributeEngi neTag_t AttributeEngi neTag_t;
034 enum { di nensions = PDim};

035

036 /1 Constructor sets up layouts and registers attributes

037 Quant a(const Particl eLayout t &pl)

038 . Particl es<PT>(pl)

039 {

040 addAttri bute(x);

file:///E|/r2/html/tut-09.html (5 of 12) [11/1/1999 7:02:31 PM]

POOMA Tutorial 9: Particles

041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101

H

addAttri bute(v);
}

/1 X position and velocity are attributes (would normally be

/1 private, with accessor nethods)

Dynami cArray< Vect or <di nensi ons, Axi sType_t>, AttributeEngi neTag t > x;
Dynam cArray< Vect or <di nensi ons, Axi sType_ t>, AttributeEngineTag t > v;

/1 Engine tag type for attributes. Here we use a MiltiPatch engine
/1 with the patches being Bricks of data, and a GridTag, which allows
/1 the patches to possibly be of differing sizes. This is inportant
/1 since we may not have the sane nunber of particles in each patch.
typedef Ml ti Patch<GidTag, Brick> AttrEngi neTag_t;

/1 The particle traits class and | ayout type for this application
typedef PTraits<AttrEngi neTag t> PTraits_t;
typedef PTraits t::ParticlelLayout t PLayout t;

// Simulation control constants

const doubl e onega = 2.0;

const doubl e dt = 1.0/ (50.0 * onega);
const int nParticle = 100;

const int nPatch = 4;

const int nlter = 500;

/1 Main simulation routine.
int main(int argc, char *argv[])

{

/1 Initialize POOVA and | nform object for output to term nal
Pooma: :initialize(argc, argv);

| nform out (argv[O0]);

out << "Begin Gscillation exanple code" << std::endl;

[/l Create a uniformlayout object to control particle positions.
PLayout t |ayout(nPatch);

/1l Create Particles, using our special subclass and the | ayout
typedef Quanta<PTraits t> Particles t;
Particles t p(layout);

/] Create particles on one patch, then re-distribute (just to show off)
p.create(nParticle, 0);
for (int ip=0; ip<nPatch; ++ip)
{
out << "Current size of patch " << ip << " ="
<< p.attributelLayout (). patchDomai n(ip).size()
<< std::endl;

}
out << "Resyncing particles object ... " << std::endl
p. sync(p. x);

/1l Show re-bal anced distribution
for (int ip=0; ip<nPatch; ++ip)
{
out << "Current size of patch " <<ip <<™" ="
<< p.attributelLayout (). patchDomai n(ip).size()
<< std::endl;

file:///E|/r2/html/tut-09.html (6 of 12) [11/1/1999 7:02:31 PM]

POOMA Tutorial 9: Particles

102 /! Random ze positions in domain [-1,+1], and set velocities to zero.
103 /1 This is done with a | oop because POOVA does not yet have RNGs.
104 typedef Particles t::AxisType t Coordinate t;

105 Vect or<PDi m Coordi nate_t> initPos;

106 srand(12345U) ;

107 for (int ip=0; ip<nParticle; ++ip)

108 {

109 for (int idimO; idinmPDi m ++idim

110 {

111 initPos(idim = 2.0*(rand() / static_cast<Coordi nate_t>(RAND_MAX))-1. 0;
112 }

113 p. x(ip) = initPos;

114 p.v(ip) = Vector<PDim Coordinate_t>(0.0);

115 }

116

117 [l print initial state
118 out << "Time = 0.0:" << std::endl;

119 out << "Quanta positions:" << std::endl << p.x << std::endl;
120 out << "Quanta velocities:" << std::endl << p.v << std::endl;
121

122 /1 Advance particles in each tinme step according to:

123 /1 dx/dt = v

124 /1 dv/dt = -onmega™2 * x

125 for (int it=0; it<numt; ++it)

126 {

127 p.Xx = p.x + dt * p.v;

128 p.v = p.v - dt * onega * onega * p.Xx;

129 out << "Time =" << (it+1)*dt << ":" << std::endl

130 out << "Quanta positions:" << std::endl << p.x << std::endl
131 out << "Quanta velocities:" << std::endl << p.v << std::endl;
132 }

133

134 /1 Finalize POOVA

135 Pooma: :finalize();

136 return O;

137 }

Asdiscussed earlier, the program begins by creating atraits classthat t ypedef sthenamesAt t ri but eEngi neTag_t and
Parti cl eLayout _t (lines11-21). An application-specific class called Quant a isthen derived from Par t i cl es, without
specifying the traits to be used (lines 25-48). This class declares two attributes, to store the particles' x coordinate and velocity. The
body of its constructor (lines 40-41) adds these attributes to its attribute list, while passing the actual layout object specified by the
applicationuptoParti cl es.

Lines 54, 57 and 58 create some conveniencet ypedef sfor the engine and layout that the application will use. Lines 61-65 then
define constants describing both the physical parameters to the problem (such as the oscillation frequency) and the computational
parameters (the number of particles, the number of patches, etc.). In area application, many of these values would be variables,
rather than hard-wired constants.

After the POOMA library isinitialized (line 71), an | nf or mobject is created to manage output. (See the appendix on I/O for a
description of this class.) An actual layout is then created (line 76), and used to create an actual set of particles (line 80). The
particles themselves are created by thecall toParti cl es: : creat e() online 83. The output on lines 84-89 shows that all
particles are initially created in the zeroth patch.

Thesync() cal online 92 redistributes particles across the available patches according to their x coordinates. As the output from
lines 95-100 shows, this load-bal ances the particles as evenly as possible.

The particle positions are randomized on lines 107-115. (A loop is used here because random number generation has not yet been
integrated into the expression evaluation machinery in this release of POOMA.) After some more output to show the particles
initial positions, the application finally enters the main timestep loop (lines 125-132). In each time step, particle positions and
velocities are updated under the influence of a simple harmonic oscillator force, and then printed out. Once the specified number of
timesteps has been executed, the library is shut down (line 135) and the application exits.

file:///E|/r2/html/tut-09.html (7 of 12) [11/1/1999 7:02:31 PM]

file:///E|/r2/html/io.html

POOMA Tutorial 9: Particles

Boundary Conditions

Inadditiontoan At t ri but eLi st ,eachParti cl es object dso storesaPart i cl eBCLi st of boundary conditionsto be
applied to the attributes. These are generalized boundary conditions in the sense that they can be applied not only to a particle
position attribute, but to any sort of attribute or expression involving attributes. POOMA provides typical particle boundary
conditions including periodicity, reflection, absorption, reversal (reflection of one attribute and negation of another), and kill
(destroying a particle). Boundary conditions can be updated explicitly by calling

Parti cl es:: appl yBoundar yCondi ti ons(), orimplicitly by callingPar ti cl es: : sync() (which performs the same
operations, along with several others).

Each boundary condition is assembled by first constructing an instance of the type of boundary condition desired, then invoking the
addBoundar yCondi ti on() member function of Part i cl es with three parameters: the subject of the boundary condition
(i.e, the attribute or expression to be checked against the range), its object (the attribute to be modified when the subject is outside
the range), and the actual boundary condition object. The boundary condition is then applied each timethesync() functionis
invoked.

The subject and object of a boundary condition are usually the same, but thisis not required. In one common case, the subject isan
expression involving particle attributes, while the object isthe Par t i cl es object itself. For example, an application's boundary
condition might specify that particles are to be deleted if their kinetic energy goes above some limit. The subject would be the
expression 0. 5* ¥ v* v, and the object could be either one of the particle attributes (because deleting a particle from one attribute
automatically deletesit from all the others) or the Par t i cl es object itself. The object cannot be the expression 0. 5* n¥ v*v
because that isaConst Ar r ay and cannot be modified.

Another case involves the reversal boundary condition, which is used to make particles bounce off walls. Bouncing not only reflects
the particle position back inside the wall, but also reverses the particle's velocity component in that direction. The reversal boundary
condition therefore needs an additional object besides the original subject.

POOMA provides the pre-defined boundary condition classes listed in the table below.

Class Behavior

Keeps attributes within given limitsmi n or max. If they cross the given boundaries, their
values are changed to the given limiting value.

If particles cross outside the given boundary, they are destroyed by putting their index in
the deferred destroy list.

Absor bBC<T>(T min, T max)

Kill BC<T>(T min, T nmax)

Periodi cBC<T>(T nmin, T
max)

Refl ect BC<T>(T min, T nmax) Reflectsan attribute back if it crosses outside of the given boundary.

Reverses (negates) the value of the object attribute if it crosses outside the given domain,
and reflects the value of the subject attribute.

K eeps attributes within a given periodic domain.

Rever seBC<T>(T nmin, T nax)

Example: Elastic Collision

As an example of how particle boundary conditions are used, consider a set of particles bouncing around in abox in three
dimensions. exanpl es/ Parti cl es/ Bounce/ Bounce. cpp shows how this can be implemented using POOMA for the case
of perfectly elastic collisions. The codeis:

001 #include "Poona/Particles.h"

002 #incl ude "Pooma/ Dynam cArrays. h"
003 #include "Tiny/Vector.h"

004 #include "Utilities/Informh"

005 #incl ude <iostreanr

006 #include <stdlib. h>

007

008

009 // Dinensionality of this problem
010 static const int PDim= 3;

011

012 // Particles subclass with position and velocity
013 tenplate <class PT>

014 «class Balls : public Particl es<PT>

file:///E|/r2/html/tut-09.html (8 of 12) [11/1/1999 7:02:31 PM]

POOMA Tutorial 9: Particles

015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075

{

public:
[l Typedefs
typedef Particl es<PT> Base_t;
typedef typenane Base t::AttributeEngineTag t AttributeEngineTag t;
typedef typenane Base_t::ParticlelLayout _t Particl eLayout _t;
typedef doubl e Axi sType_t;
typedef Vector<PDi m Axi sType_t > Poi nt Type_t;

/1 Constructor: set up layouts, register attributes
Bal | s(const Particl eLayout _t &pl)

. Particl es<PT>(pl)

{

addAttri bute(pos);
addAttri bute(vel);

}

/1 Position and velocity attributes (as public nmenbers)

Dynami cArray< Poi nt Type_t, AttributeEngi neTag t > pos;

Dynam cArray< Point Type t, AttributeEngineTag t > vel
|

/1 Use canned traits class from CommonParticleTraits.h

/1 MPBrickUniform provides MiltiPatch Brick Engine for

/1 particle attributes and Unifornmiayout for particle data.
typedef MPBrickUniform PTraits_t;

/1l Type of particle |ayout
typedef PTraits_t::ParticlelLayout_t ParticlelLayout _t;

/1 Type of actual particles
typedef Balls<PTraits t> Particle_t;

/1 Number of particles in sinulation
const int NunmPart = 100;

/1 Number of timesteps in sinulation
const int NuntBteps = 100;

/1 Nunber of patches to distribute particles across.
/1l Typically one woul d use one patch per processor.
const int nunPatches = 16

/1 Main simulation routine

int main(int argc, char *argv[])

{
/1 Initialize POOVA and out put stream
Pooma: :initialize(argc, argv);
I nform out (argv[0]);

out << "Begi n Bounce exanple code" << std::endl;
OUt << M--omomim e " << std::endl;

/]l Create a particle layout object for our use
Particl eLayout t particl eLayout (nunPat ches);

/1l Create the actual Particles object (but not the particles as yet)
Particle_t balls(particlelLayout);

/]l Create sone particles, reconpute the global domain, and initialize
/1 the attributes randomy. The global Create call will create an equa

file:///E|/r2/html/tut-09.html (9 of 12) [11/1/1999 7:02:31 PM]

POOMA Tutorial 9: Particles

076 /1 nunber of particles on each patch. The particle positions are initialized
077 /1 within a 12 X 20 X 28 dormain, and the velocity conponents are all

078 /1l in the range -4 to +4.

079 bal | s. gl obal Creat e(NunPart);

080 srand(12345U) ;

081 Particle_t::PointType_t initPos, initVel;

082 for (int i =0; i < NunPart; ++i)

083 {

084 for (int d =0;, d < PDm ++d)

085 {

086 initPos(d) = ((d+1) * 8.0 + 4.0) * rand() /

087 static_cast<Particle_t::Axi sType_t >(RAND_MAX) ;
088 initVel (d) = 8.0 * rand() /

089 static_cast<Particle_t::AxisType_t>(RAND_MAX) - 4.0;
090 }

091 bal I s. pos(i) = initPos;

092 bal I s.vel (i) = initVel;

093 }

094

095 /1 Display the particle positions and vel ocities.

096 out << "Timestep 0: " << std::endl;

097 out << "Ball positions: " << balls.pos << std::endl;

098 out << "Ball velocities: " << balls.vel << std::endl;

099

100 /1 Set up a reversal boundary condition, so that particles wll
101 /1 bounce off the domain boundari es.

103 Particle_t::PointType t |ower, upper;
104 for (int d 0; d < PDm ++d)

105 {

106 | ower (d) = 0.0;

107 upper(d) = (d+1) * 8.0 + 4.0;

108 }

109 Rever seBC<Particl e_t:: Point Type_t> bounce(l ower, upper);
110 bal | s. addBoundar yCondi ti on(bal I s. pos, balls.vel, bounce);
111

112 /1 Advance simul ati on stepw se

113 for (int it=1; it <= NunBteps; ++it)

114 {

115 /1 Advance ball positions (timestep dt = 1)

116 bal | s. pos += balls. vel

117

118 /1 I nvoke boundary conditions

119 bal | s. appl yBoundar yCondi ti ons();

120

121 /1 Print out the current particle data

122 out << "Timestep " << it << ": " << std::endl

123 out << "Ball positions: " << balls.pos << std::endl
124 out << "Ball velocities: " << balls.vel << std::endl
125 }

126

127 /1 Shut down POOVA and exit

128 Poore: : finalize();

129 return O;

130 }

After defining the dimension of the problem (line 10), this program definesaclass Bal | s, which represents the set of particles
(lines 13-35). Its two attributes represent the particles positions and velocities (lines 33-34). Note how the type of engine used for
evaluating these attributes is defined in terms of the types exported by the traits class with which Bal | s isinstantiated

(Attri but eEngi neTag_t, line 19), while the type used to represent the points is defined in terms of the dimension of the
problem (line 22), rather than being made 1-, 2-, or 3-dimensional explicitly. This style of coding makes it much easier to change
the simulation as the program evolves.

file:///E|/r2/html/tut-09.html (10 of 12) [11/1/1999 7:02:31 PM]

POOMA Tutorial 9: Particles

Rather than defining a particle traits class explicitly, as the oscillation example above did, this program uses one of the pre-defined
traitsclassgiveninsrc/ Parti cl es/ ConmonParti cl eTrai t s. h. For the purposes of this example, a multipatch brick
engineis used for particle attributes, and particle dataislaid out uniformly. Once again, at ypedef isused to create a symbolic
name for this combination, so that the program can be updated by making a single change in asingle location.

Lines 43-56 then define the types used in the simulation, and the constants that control the simulation's evolution. It would be
possible to shorten this part of the program by combining some of these type definitions (as on line 43), but readability would
suffer.

The main body of the program follows; as usual, it begins by initializing the POOMA library, and creating an output handler of type
I nf or m(lines 62-63). Line 69 then creates alayout object describing the domain of the problem.

The particles object itself comesinto being on line 72, although the actual particles aren't created until line 79. Recall that by
default, gl obal Creat e() (re-)numbersthe particlesby calling Parti cl es'r enunber () method. As discussed earlier, this
could be prevented by passing f al se as a second parameter to gl obal Creat e(),i.e., by caling

gl obal Creat e(N, fal se). Lines80-93then randomizethe balls initial positions and velocities.

Lines 103-110 are the most novel part of this simulation, asthey create reflecting boundary conditions for the simulation, and add
themto the bal | s object. Lines 103-108 defines where particles bounce; again, thisis done in a dimension-independent fashion in
order to make code evolution as easy as possible. Line 104 turns upper and | ower into areversing boundary condition, which
line 105 then adds to bal | s. The main simulation loop now consists of nothing more than advancing the balls in each time step,
and calling sync() to enforce the boundary conditions.

Summary

Particles are afundamental construct in physical calculations. POOMA'sPar ti cl es class, and the classes that support it, alow
programmers to create and manage sets of particles both efficiently and flexibly. While doing this is a multi-step process, the payoff
as programs are extended and updated is considerable. The list below summarizes the most important aspectsof Parti cl es’
interface.

o« Particles<PL>::initialize(PL & ayout): Initialize the particles object with the given particle layout. This
should beused if the Par t i cl es object was created with the default constructor.

« Si ze() : Return the current total number of particles, correct sincethelast r enunber () .
« domai n() : Return the one-dimensional domain of the particle attributes (the | nt er val <1>0. .. si ze() - 1).
o attributes(): Returnthe number of registered attributes.

o addAttribute(attrib):Addthegiven attribute (should be aDynami cAr r ay of the proper engine type) to the
Parti cl es'attributelist.

o« renoveAttribute(attrib):Removethegiven attribute fromthe Parti cl es' attribute list.

o sync(posattrib): Apply boundary conditions, carry out cached destroys, swap particles, and renumber particles (in that
order).

« swap(posattrib): Move particle data between patches as specified by the particle layout strategy (uniform or spatial)
and renumber particles.

« appl yBoundar yCondi ti ons() : Apply the boundary conditions to the current attributes, without renumbering or
destroying particles.

« perfornDestroy(): Destroy any particles that were specified in previousdef er r edDest r oy () requests.

« renunber () : Recalculate the per-patch and total domain of the system by inspecting the Par t i ¢l es' attribute layout.

o create(N, patch, renum: CreateN particlesin the specified patch (and optionally renumber). If pat ch and r enurr
are omitted, this creates particles in the last patch, so as not to disturb the numbering of existing particles.

« gl obal Create(N, renun): Create N/P particlesin the P patchesthat the Par t i cl es object occupies (and optionally
renumber).

o destroy(donmi n, patchld, renum :Immediately destroy particlesin the specified domain, and optionally
renumber. The domain may be a one-dimensional range of particle index numbers or alist of index numbers. (See the note
below on the pat chl d parameter.)

. def erredDestroy(donai n, patch): Puttheindicesof the particlesin the given domain in the deferred destroy list
of thePar ti cl es object, so that they will be destroyed by the next call to per f or nDest r oy() . (See the note below on
the pat chl d parameter.)

« addBoundar yCondi ti on(Subj, Obj, BCobj) andaddBoundaryConditi on(Subj, BCobj):Addanew
boundary condition that depends on the subject Subj and affects the object Cbj .

file:///E|/r2/html/tut-09.html (11 of 12) [11/1/1999 7:02:31 PM]

POOMA Tutorial 9: Particles

« renoveBoundaryCondi tion(i) andrenoveBoundar yCondi ti ons() : Delete theith boundary condition, or all
boundary conditions.

Note: if thepat chl d giventodest roy() or def er r edDest r oy() isnegative, thedomai n argument must specify aglobal
domain (i.e., global numbering). If the argument is non-negative, the domain isinterpreted as being local, i.e., theindex O refersto
thefirst particle in that patch.

[Prev] [Home] [Next]

Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/tut-09.html (12 of 12) [11/1/1999 7:02:31 PM]

http://www.acl.lanl.gov/pooma/

POOMA Tutorial 10: Particles and Fields

Parallel Object-Oriented
Methods.and Applications™

POOMA Tutorial 10
Particles and Fields

Contents:
Introduction
Particle/Field Interpolation
Laying Out Particles and Fields
Example: Particle-in-Cell Simulation

Summary

Introduction

The previous tutorials have described how POOMA represents fields and particles. This tutorial shows how the two can
be combined to create complete simulations of complex physical systems. The first section describes how POOMA
interpolates values when gathering and scattering field and particle data. Thisisfollowed by alook at thein's and out's
of layout, and a medium-sized example that illustrates how these ideas fit together.

Particle/Field Interpolation

POOMA'sParti cl es classisdesigned to be used in conjunction with its Fi el ds. Interpolators are the glue that
bind these together, by specifying how to calculate field values at particle (or other) locations that don't happen to lie
exactly on mesh points.

Interpolators are used to gather values to specific positionsin afield's spatial domain from nearby field elements, or to
scatter values from such positions into the field. The interpolation stencil describes how values are transated between
field element locations and arbitrary pointsin space. An example of using this kind of interpolation is particle-in-cell
(PIC) simulations, in which charged particles move through a discretized domain. The particle interactions are
determined by scattering the particle charge density into afield, solving for the self-consistent electric field, and
gathering that field back to the particle positions. The last example in this tutorial describes a simulation of this kind.

POOMA currently offersthree types of interpolation stencils: nearest grid point (NGP), cloud-in-cell (CIC), and
subtracted dipole scheme (SUDS). NGP is a zeroth-order interpolation that gathers from or scatters to the field element
nearest the specified location. CIC is afirst-order scheme that performs linear weighting among the 2D field elements
nearest the point in D-dimensional space. SUDS is also first-order, but it uses just the nearest field element and its two
neighbors along each dimension, so it is only a 7-point stencil in three dimensions. Other types of interpolation schemes
can be added in a straightforward manner.

file:///E|/r2/html/tut-10.html (1 of 9) [11/1/1999 7:02:36 PM]

POOMA Tutorial 10: Particles and Fields

[l (] (T
s WL L
[l [l [l T T T
W il W L L L
T
Wl

NGP CIC SUDS

Figure 1: Interpolation strategies. Black dots show particle positions, and open circles are the interpolation stencil
points.

Interpolation isinvoked by calling the global functionsgat her () andscatt er (), both of which take four
arguments:

1. the particle attribute to be gathered to or scattered from (usually asingle Dynam cAr r ay, although one could
scatter an expression involving Dynam cAr r aysaswell, since the evaluation of this expression just produces a
temporary one-dimensional Const Ar r ay);

2. theFi el d to be gathered from or scattered to;
3. the particle positions (normally aDynami cAr r ay that isamember of aPar ti cl es-derived class); and

4. aninterpolator tag object of type NGP, CIC or SUDS. These tag objects are defined in the header files
I nt er pol at or NGP. h, I nt er pol at or Cl C. h,and | nt er pol at or SUDS. h respectively.

An example of thisis:

gather (P.efd, Efield, P.pos, CC));

wherePisaPar ti cl es subclass object whose attributes are ef d for storing the gathered electric field from the
Fi el d Ef i el d and pos for the particle positions. The default constructor of the interpolator Cl Cis used to create a
temporary instance of the classto passto gat her () , telling it which interpolation scheme to use.

The particle attribute and position arguments passed to gat her () andscatt er () should have the same layout, and
the positions must refer to the geometry of the Fi el d being used. The interpolator will compute the required
interpolated values for the particles on each patch. These functions assume each particle is only interacting with field
elementsinthe Fi el d patch that exactly corresponds to the particle patch. Thus, applications must use the

Spati al Layout particlelayout strategy and make sure that the Fi el d has enough guard layers to accommodate the
interpolation stencil.

In addition to the basic gat her () andscatt er () functions, POOMA offers some variants that optimize other
common operations. The first of these, scat t er Val ue() , scattersasingle valueinto aFi el d rather than aparticle
attribute with different values for each particle. Itsfirst argument is a single value with atype that is compatible with
the Fi el d element type.

The other three optimized methods are gat her Cache(),scatt er Cache(),andscatt er Val ueCache().
Each of these has two overloaded variants, which allow applications to cache and reuse interpolated data, such as the
nearest grid point for each particle and the distance from the particle's position to that grid point. The difference
between the elements of each overloaded pair of methods is that one takes both a particle position attribute and a
particle interpolator cache attribute among its arguments, while the other takes only the cache attribute. When the first
of theseis called, it caches position information in the provided cache attribute. When the second is called with that
cache attribute as an argument, it re-uses that information. This can speed up computation considerably, but it is
important to note that applications can only do this safely when the particle positions are guaranteed not to have

file:///E|/r2/html/tut-10.html (2 of 9) [11/1/1999 7:02:36 PM]

POOMA Tutorial 10: Particles and Fields

changed since the last interpolation.

Laying Out Particles and Fields

The use of particles and fields together in a single application brings up some issues regarding layout that do not arise
when either is used on its own. There are two characteristics of Engi nesthat must be considered in order to determine
whether they can be used for attributesin Par t i cl es objects:

1. Can the engine use a layout that is "shared" among several engines of the same category, such that the
size and layout of the engine is synchronized with the other engines using the layout? If thisis the case,
then creation, destruction, repartitioning, and other operations are done for all the shared engines. Particles
require all their attributes to use a shared layout, so only engines that use a shared layout can be used for
particle attributes. The only engines with this capability in this release of POOMA (i.e., the only engines
that areusablein Par ti cl es attributes) are Shar edBr i ck (using aShar edDomai nLayout layout)
and some specializations of Mul t i Pat ch.

Mul ti Pat ch can use several different types of layouts and single-block engines, and all Mul ti Pat chs
use a shared layout. However, only the Mul t i Pat ch<Gri dTag, * > typesof Mul ti Pat ch enginesare
useful for Par ti cl es attributes, since only that engine type can have patches of varying size. Future
releases of POOMA will add other layouts, such as Ti | eLayout , that will also be useful for attributes.

Notethat Mul t i Pat ch<Uni f or niTag, Br i ck> can not be used for particle attributes, asit uses a
Uni f or nr i dLayout . While that layout is"shared”, Uni f or nari dLayout isnot useful for
particles because it requires al patches to have the same size, and particle attribute patches change their
size dynamically.

2. How many patches can the engine have? A Shar edBr i ck can only have one patch, but aGr i d-based
Mul t i Pat ch can have severa patches. Either one can be used in serial or in parallel, but their efficiency
will differ. If individual particle attribute expressions will normally be run in parallel, the application
should useaMul ti Pat ch. Otherwise, it should useaShar edBr i ck.

Implicit in the discussion above is the fact that there are actually three different types of layout classes that an
application programmer must keep in mind:

1. thelayout for the particle attributes;

2. thelayout for the Fi el d givento the particle Spat i al Layout (which isused to determine the layout of the
space in which the particles move around); and

3. theactual Spat i al Layout that connects the info about the Fi el d layout tothe Par ti cl es attribute layout.

The only thing that needs to match between the attribute and Fi el d layouts is the number of patches, which must be
the same. The engine type (and thus the layout type) of the attributes and of the field do not have to match. An
application could therefore use a Shar edBr i ck engine for particle attributes, and a

Mul ti Pat ch<Uni f or mTag, Bri ck> fortheFi el d, aslong asthe Mul ti Pat ch engine usesjust one patch
(since Shar edBr i ck can only have one patch).

Note once again that in the ssmple case of aUni f or mLayout , applications do not need to worry about the Fi el d
layout type, only the particle attributes' layout (which still needs to be shared) and the particle layout (in this case,
Uni f or mLayout). This commonly arises during the prototyping (i.e., pre-parallel) stages of application development.

Example: Particle-in-Cell Simulation

Our third and final example of thisimportant classis a particle-in-cell program, which simulates the motion of charged
particlesin a static sinusoidal electrical field in two dimensions. This example brings together the Fi el d classes of the
preceding tutorials with thistutorial'sPar t i cl es class.

Because this exampleis longer than the othersin these tutorials, it will be described in sections. For a unified listing of
the source code, please seethe fileexanpl es/ Parti cl es/ Pl C2d/ Pl C2d. cpp inthe distribution.

file:///E|/r2/html/tut-10.html (3 of 9) [11/1/1999 7:02:36 PM]

POOMA Tutorial 10: Particles and Fields

Thefirst step isto include all of the usual header files:

001 #include "Poona/Particles.h"

002 #include "Pooma/ Dynam cArrays. h"
003 #i nclude "Pooma/ Fi el ds. h"

004 #include "Uilities/Informh"
005 #include <iostreane

006 #include <stdlib. h>

007 #include <math. h>

Once this has been done, the application can define atraits classfor the Par t i cl es object it isgoing to create. As
aways, thiscontainst ypedef sfor At t ri but eEngi neTag_t andParti cl eLayout _t . Thetraitsclassfor this
example aso includes an application-specifict ypedef caled| nt er pol at or Tag_t, for reasons discussed below.

008 tenplate <class EngineTag, class Centering, class MeshType, class FL,

009 cl ass I nterpol at or Tag>
010 struct PTraits
011 {

012 /1 The type of engine to use in the attributes

013 typedef Engi neTag Attri buteEngi neTag_t;

014

015 /1 The type of particle layout to use

016 typedef Spati al Layout <Di scret eGeonetry<Cent eri ng, MeshType>, FL>
017 Particl eLayout _t;

018

019 /1l The type of interpolator to use

020 typedef InterpolatorTag InterpolatorTag t;

021 };

The interpolator tag type isincluded in the traits class because an application might want the Par t i cl es-derived to
provide the type of interpolator to use. One example of thisisthe casein which agat her () orscatter () cal
occurs in a subroutine which is passed an object of aPar t i cl es-derived type. This subroutine could extract the
desired interpolator type from that object using:

/1l Particles-derived type Particles_t already defined
typedef typenane Particles_t::InterpolatorTag t InterpolatorTag t;

In this short example, thisis not really necessary because | nt er pol at or Tag_t isbeing defined and then used
within the same file scope. Nevertheless, thisillustrates a situation in which the user might want to add new traitsto
their PTraits class beyond the required traits At t r i but eEngi neTag_t andParti cl eLayout _t.

We can now also define the class which will represent the charged particles in the simulation. Asin other examples, this
isderived from Par t i cl es, and templated on atraits class so that such things asits layout and eval uation engine can
be quickly, easily, and reliably changed. This class has threeintrinsic properties: the particles positions R, their
velocities V, and their charge/mass ratios gm The class also has a fourth property called E, which is used to record the
electrical field at each particle's position in order to calculate forces. This calculation will be discussed in greater detail
below.

024 tenplate <class PT>
025 <class ChargedParticles : public Particl es<PT>

026 {

027 public:

028 [l Typedefs

029 typedef Particl es<PT> Base_t;

030 typedef typenane Base_t::AttributeEngineTag_t AttributeEngi neTag_t;
031 typedef typenane Base t::ParticlelLayout t Particl eLayout t;

file:///E|/r2/html/tut-10.html (4 of 9) [11/1/1999 7:02:36 PM]

POOMA Tutorial 10: Particles and Fields

032 typedef typenane ParticlelLayout t::AxisType t AxisType t;
033 typedef typenane Particl elLayout t::PointType_t PointType_t;

034 typedef typenane PT::InterpolatorTag_t I nt erpol atorTag_t;
035

036 /1 Dimensionality

037 static const int dinmensions = Particl eLayout _t::di mensions;
038

039 /1 Constructor: set up layouts, register attributes

040 ChargedParticl es(const Particl eLayout_t &pl)

041 . Particl es<PT>(pl)

042 {

043 addAttri bute(R);

044 addAttri bute(V);

045 addAttri bute(E);

046 addAttri bute(gm;

047 }

048

049 /1 Position and velocity attributes (as public nenbers)

050 Dynam cArray<Poi nt Type_t, Attri but eEngi neTag_t> R
051 Dynani cArray<Poi nt Type_t, Attri but eEngi neTag t> V,
052 Dynani cArray<Poi nt Type_t, Attri but eEngi neTag_t > E;
053 Dynam cArray<doubl e, Attri but eEngi neTag_t> gm
054 };

With the two classes that the simulation relies upon defined, the program next defines the dependent types, constants,
and other values that the application needs. These include the dimensionality of the problem (which can easily be
increased to 3), the type of mesh on which the calculations are done, the mesh's size, and so on:

058 // Dinmensionality of this problem

059 static const int PDim= 2;

060

061 // Engine tag type for attributes

062 typedef MiltiPatch<GidTag, Brick> AttrEngi neTag_t;

063

064 // Mesh type

065 typedef UnifornRectilinear Mesh<PDi m Cart esi an<PDi n», doubl e> Mesh_t;
066

067 /! Centering of Field el enents on nmesh

068 typedef Cell Centering_t;

069

070 // Ceonetry type for Fields

071 typedef DiscreteGeonetry<Centering_t,Mesh_ t> Geonetry_t;
072

073 [// Field types

074 typedef Field< CGeonetry_t, double,

075 Mul t i Pat ch<Uni f orniTag, Bri ck> > DFiel d_t;
076 typedef Field< Geonetry_ t, Vector<PD m doubl e>,

077 Mul ti Pat ch<Uni f or mTag, Bri ck> > VecField_t;
078

079 // Field layout type, derived from Engi ne type
080 typedef DField_t::Engine_t Engine_t;

081 typedef Engine_t::Layout_t FLayout _t;

082

083 // Type of interpolator

084 typedef NGP InterpolatorTag_t;

085

file:///E|/r2/html/tut-10.html (5 of 9) [11/1/1999 7:02:36 PM]

POOMA Tutorial 10: Particles and Fields

086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112

/'l Particle traits class
typedef PTraits<AttrEngi neTag_t, Centering_t, Mesh_t, FLayout _t,

InterpolatorTag t> PTraits_t;

/'l Type of particle |ayout
typedef PTraits t::ParticlelLayout t PLayout t;

/'l Type of actual particles
typedef ChargedParticles<PTraits t> Particles_ t;

[l &id sizes
const int nx = 200, ny = 200;

/1 Number of particles in sinulation
const int NunPart = 400;

/1 Number of timesteps in sinulation
const int NunSteps = 20;

/1 The value of pi (sone conpilers don't define MPI)
const double pi = acos(-1.0);

/1 Maxi mum val ue for particle g/mratio
const double gmmax = 1.0;

/1 Timestep
const double dt = 1.0;

The preparations above might seem overly elaborate, but the payoff comes when the main simulation routine is written.
After the usual initialization call, and the creation of an | nf or mabject to handle output, the program defines one
geometry object to represent the problem domain, and another that includes a guard layer:

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

int main(int argc, char *argv[])

{

/1 Initialize POOVA and out put stream
Pooma::initialize(argc, argv);
I nform out (argv[0]);

out << "Begin PIC2d exanpl e code" << std::endl;
OUt << Memmmmmmie i " << std::endl;

/'l Create nmesh and geonetry objects for cell-centered fields.
I nt erval <PDi n> nmeshDomai n(nx+1, ny+1) ;

Mesh_t mesh(neshDonai n);

CGeonetry_t geonetry(nmesh);

/1 Create a second geonetry object that includes a guard | ayer.
Guar dLayer s<PDi n> gl (1);
Geonetry_t geonetryG@.(mesh, gl);

The program then creates a pair of Fi el d objects. Thefirst, phi , isafield of doubl e values, and records the
electrostatic potential at pointsin the mesh. The second, EFD, isafield of two-dimensional Vect or s, and records the
electric field at each mesh point. The types used in these definitions were declared on lines 74-77 above. Note how
these definitions are made in terms of other defined types, such asGeonet ry_t , rather than directly in terms of basic
types. This alows the application to be modified quickly and reliably with minimal changes to the code.

file:///E|/r2/html/tut-10.html (6 of 9) [11/1/1999 7:02:36 PM]

POOMA Tutorial 10: Particles and Fields

133
134
135
136
137
138
139
140
141

/[l Create field | ayout objects for our electrostatic potenti al
/1 and our electric field. Deconpositionis 4 x 4.

Loc<PDi > bl ocks(4, 4);

FLayout _t flayout (geonetry. physi cal Dormai n(), bl ocks);

FLayout t flayout GL(geonetryG.. physi cal Domai n(), bl ocks, gl);

/[l Create and initialize electrostatic potential and electric field.
DFi el d_t phi(geonetryd, flayout Q) ;
VecFi el d_t EFD(geonetry, flayout);

The application now adds periodic boundary conditions to the electrostatic field phi , so that particles will not see sharp
changesin potential at the edges of the simulation domain. The values of phi and EFD are then set: phi isdefined
explicitly, while EFD records the gradient of phi .

144
145
146
147
148
149
150
151

/1 potential phi = phi0 * sin(2*pi *x/Lx) * cos(4*pi*y/Ly)
/1 Note that phi is a periodic Field
/'l Electric field EFD = -grad(phi);
phi . addBoundar yCondi ti ons(Al | Peri odi cFaceBC());
doubl e phi0 = 0.01 * static_cast <doubl e>(nx);
phi = phi0 * sin(2.0*pi*phi.x().conp(0)/nx)
* cos(4.0*pi *phi.x().conmp(1)/ny);
EFD = -grad<Centering t>(phi);

With the fieldsin place, the application creates the particles whose motions are to be simulated, and adds periodic
boundary conditions to this object aswell. The gl obal Cr eat e() cal creates the same number of particles on each

processor.

153
154
155
156
157
158
159
160
161
162
163
164

[/l Create a particle layout object for our use
PLayout _t | ayout (geonetry, flayout);

[/l Create a Particles object and set periodic boundary conditions
Particles_t P(layout);

Particles t::PointType t |ower(0.0,0.0), upper(nx,ny);

Peri odi cBC<Particles_t:: PointType t> bc(Il ower, upper);

P. addBoundar yCondi ti on(P. R, bc) ;

/1 Create an equal nunber of particles on each processor
/! and recompute gl obal donain.
P. gl obal Creat e(NunPart);

Note that the definitions of | ower and upper could be made dimension-independent by defining them with aloop. If
ng isan array of i nt sof length PDi m then thisloop is:

Particles_t::PointType_t |ower, upper;

for (int d=0; d<PDim ++d)
{

| ower (d) = O;
} upper (d) = ng[d];

The application then randomizes the particles positions and charge/mass ratios using a sequential loop (since parallel
random number generation is not yet in POOMA). Once this has finished, the method swap() iscalled to redistribute
the particles based on their positions, i.e., to move each particle to its home processor. The initial positions, velocities,
and charge/mass ratios of the particles are then printed out.

166

/1 Randominitialization for particle positions in nx by ny domain

file:///E|/r2/html/tut-10.html (7 of 9) [11/1/1999 7:02:36 PM]

POOMA Tutorial 10: Particles and Fields

167 /1l Zero initialization for particle velocities

168 /1 Randomintialization for charge-to-mass ratio from-qgnmrax to gnmmax
169 P.V = Particles_t::PointType_t(0.0);

170 srand(12345U) ;

171 Particles_t::PointType_t initPos;

172 for (int i =0; i < NunPart; ++i)

173 {

174 initPos(0) = nx * rand() /

175 static_cast<Particles_t::Axi sType_t>(RAND_MAX) ;
176 initPos(1l) = ny * rand() /

177 static_cast<Particles t::AxisType_ t>(RAND MAX);
178 P.R(i) = initPos;

179 P.gm(i) = (2.0 * rand() / static_cast<doubl e>(RAND MAX) - 1.0) *
180 gnmax;

181 }

182

183 /!l Redistribute particle data based on spatial |ayout
184 P. swap(P. R ;

185

186 out << "PlIC2d setup conplete." << std::endl;

187 OUlL << Memommmmmm e - " << std::endl;

188

189 /1 Display the initial particle positions, velocities and gm val ues.
190 out << "lInitial particle data:" << std::endl;

191 out << "Particle positions: " << P.R << std::endl;

192 out << "Particle velocities: " << P.V << std::endl;

193 out << "Particle charge-to-nass ratios: " << P.gm << std::endl;

The application is finally able to enter its main timestep loop. In each time step, the particles' positions are updated, and
then sync() iscalled to invoke boundary conditions, swap particles, and then renumber. A call isthen made to

gat her () (line 208) to determine the field at each particle's location. As discussed earlier, this function uses the
interpolator to determine values that lie off mesh points. Once the field strength is known, the particles' velocities can
be updated:

195 /1l Begin main tinestep |oop
196 for (int it=1; it <= NunBteps; ++it)

197 {

198 /1 Advance particle positions

199 out << "Advance particle positions ..." << std::endl;

200 PR=PR+ dt * P.V,

201

202 /'l 1 nvoke boundary conditions and update particle distribution
203 out << "Synchronize particles ..." << std::endl;

204 P.sync(P.R);

205

206 /1l Gather the Efield to the particle positions

207 out << "Gather E field ..." << std::endl;

208 gather(P.E, EFD, P.R, Particles t::InterpolatorTag t());
209

210 /1 Advance the particle velocities

211 out << "Advance particle velocities ..." << std::endl;

212 PV=PV+dt * PPgn* P.E

213 }

Finally, the state of the particles at the end of the simulation is printed out, and the simulation is closed down:

file:///E|/r2/html/tut-10.html (8 of 9) [11/1/1999 7:02:36 PM]

POOMA Tutorial 10: Particles and Fields

215 /1 Display the final particle positions, velocities and gm val ues.
216 out << "PIC2d tinmestep | oop conplete!" << std::endl;

217 OUt << M mmmm e e e " << std::endl;

218 out << "Final particle data:" << std::endl;

219 out << "Particle positions: " << P.R << std::endl;

220 out << "Particle velocities: " << P.V << std::endl;

221 out << "Particle charge-to-nass ratios: " << P.gm << std::endl;
222

223 [/ Shut down POOVA and exit

224 out << "End Pl C2d exanpl e code." << std::endl;
225 OUEL << Memmmmm e e e e " << std::endl;
226 Pooma: : finalize();

227 return O;

Summary

Thistutorial has shown how POOMA'sFi el d and Parti cl es classes can be combined to create complete physical
simulations. While more setup code is required than with Fortran-77 or C, the payoff is high-performance programs that
are more flexible and easier to maintain.

[Prev] [Home] [Next]

Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/tut-10.html (9 of 9) [11/1/1999 7:02:36 PM]

http://www.acl.lanl.gov/pooma/

POOMA Tutorial 11: Text Input and Output

Parallel"Object-Oriented
Methods and Applications

POOMA Tutorial 11
Text Input and Outupt

Contents:
Introduction
Thel nf or mClass
Formatted ASCII Output

ThePri nt Array Class
dbpri nt () and Related Function

Introduction

Standard C++ /O mechanisms, of course, remain available to POOMA codes. Many POOMA classes have
oper at or <<() defined to write an ASCII representation of an instance to a stream. For example,

Range<3> r (Range<1>(2, 10, 2), Range<1>(1, 3, 1), Range<1>(3));
std::cout << "r =" << r << std::endl;
will produce the following output to st dout :

r =[2:10:2,1:3:1,0: 2: 1]
Classes providing oper at or <<() include

Array Dynami cArray Field

Loc I nt erval Range I ndi rectionlLi st
Vect or Tensor Ti nyMatri x

Uni f or m& i dLayout Gi dLayout

Uni f ormRecti | i near Mesh Recti |l i near Mesh

Particl eBCltem Uni f or mLayout Spati al Layout

Standard C++ input from st di n or fileswill read values into variables of intrinsic C++ types. Thear gc and ar gv
variables work as usual for command-line arguments, except that you should first pass them through

Poora: :initialize() asdescribedin the tutorial on compiling and running POOMA programs to intercept global
POOMA command-line options.

POOMA provides additional enhancements for stream output (the | nf or mclass) and for readable, formatted output of
large array-like containers (and views of them). The Pr i nt Ar r ay class manages formatting, and the global dbpri nt ()

and other db* () functions provide convenient shortcuts and a means for printing POOMA container data values
interactively from debuggers.

For more serious output and input of data, such asrestart files and Field or Array data from large program runs, POOMA
provides extensible classes and mechanisms for binary file 1/O.

file:///E|/r2/html/tut-11.html (1 of 8) [11/1/1999 7:02:41 PM]

POOMA Tutorial 11: Text Input and Output

The | nf or mClass

POOMA includes an I/0 utility class called | nf or m Thisclassis basically asmarter ost r eam aswell as printing the
values supplied by the programs that useit, it can also format the output to include an optional prefix string, and print out
the identifier of the parallel context in which it is used. In addition, it can be used to print messages to multiple output
destinations, such as alog file plus standard out.

In normal usage, programs send valuesto | nf or ms using the overloaded oper at or <<, just asif they were ost r eans.
Each message is assigned the | nf or mis current level of interest; lower level numbers indicate more important or more
interesting messages. Each | nf or malso stores a threshold level internally, and only prints messages whose level numbers
are less than or equal to that threshold. The threshold value for an Inform object can be obtained with the

out put Level () method; the current level for the next message can be obtained with the mressagelLevel () method.
Both methods have associated set methods taking integer arguments to modify these values. A quick way to turn off
output from an Inform object is to set the output level to a special "off" setting, by calling

set Qut put Level (Inform:off).

When running with multiple threads in a context, only one thread does the output, either for standard C++ stream output,
or for I nf or moutput.. Thisisthe "control" thread, which manages task assignment to the others. It is important to note
that any output to an | nf or mwhich reads data from a multi-patch container isindependent of whether other threads
might be currently modifying those values. To avoid this, insert acall to Poorna: : bl ockAndEval uat e() beforethe
output statement:

Array<2, doubl e, Mul ti Patch<GidTag, Brick> > a(...);
I nf or m pout;

Poorma: : bl ockAndEval uat e() ;

pout << "a(23,42) =" << a(23,42) << std::endl;

By default, anewly-created | nf or mwill only print out messages sent to it on context 0, rather than on all contexts.
Programs may change this behavior by calling the method pr i nt Cont ext () , with the ID of the context on which
output isto appear asits argument. If the argument to this method is the constant | nf or m : al | Cont ext s, then
subsequent messages will be printed on all contexts being used by the program, rather than just one. (Note: currently,
POOMA islimited to one context, so this does not yet actually do anything.)

I nf or s can be constructed in three different ways. The first, and simplest, prints messages to cout . By default, output
is digplayed on context 0, and has no prefix. The other two constructors allow the calling program to specify thefileto
which output is to be sent, and the mode with which that file is to be opened, or the C++ ost r eamto which output isto
be appended:

I nform(const char *prefix = 0,
Context _t context = 0);

I nform(const char *prefix,
const char *fnane,
int witenode,
Context _t context = 0);

I nforn(const char *prefix,
std:: ostream &out stream
Context _t context = 0);

Other methods are provided to get and set the prefix to be displayed in front of messages, the | nf or mis context, the
current level of interest of messages, and the threshold for displaying messages. An overloaded set of open() methods
are also provided to open more output streams within the | nf or m These methods return an ID which can be used to
select particular streams when setting such things as the level of interest. Finally, most of the standard ost r eam
manipulators and oper at or <<() sare provided.

file:///E|/r2/html/tut-11.html (2 of 8) [11/1/1999 7:02:41 PM]

POOMA Tutorial 11: Text Input and Output

Formatted ASCII Output

The POOMA Pri nt Ar r ay class hastemplated pr i nt () methods that print readable formatted output of large
containers of values. It provides methods for controlling formatting parameters like the number of values per line, numeric
format, and precision.

The global dbpri nt () template functions are aprocedural interface around Pr i nt Ar r ay, used with a set of global
functions for setting common formatting parameters shared by all subsequent dbpri nt () invocations. These are useful
shorthand for ASCII output from source code, but more importantly they provide a meansto set up nontemplate output
functions callable interactively from within a debugger. Thisis helpful for debugging POOMA programs by examining
values from Ar r ay s and other containers.

The Print Array Class

Thetypical way touse Pri nt Arr ay isto construct aPr i nt Ar r ay object, then useits print() methods for sending
formatted ASCII output of POOMA container datato a stream such ascout or an | nf or mobject. The constructor
accepts values for six formatting parameters, which are maintained as member datain the object.

PrintArray(int domai nWdth = 3, int datawdth =10,
int dataPrecision = 4, int carReturn = -1,
bool scientific = false, int spacing = 1);

It has methods to (re)set and get current values for these formatting parameters. The following lists the methods and
describes the parameters:

set Domai nW dt h(), domai nW dt h()

The output format includes (base:bound:stride,base:bound:stride) prefixes at the beginning of each row of values.
This controls the number of columns (digits) to alow for each base, bound, or stride value.

set Dataw dth(), datawWdth()

Number of columns per numeric dataitem. For POOMA multicomponent types such asVect or and Tensor , this
is columns per component.

set Dat aPr eci si on(), dataPrecision()
If scientific istrue, the number of digits past the decimal point; otherwise, the total number of significant digits.
set CarReturn(), carReturn()

If lessthan O, print all valuesin arow (first array index) one one like of output. If greater than O, specifiesthe
number of valuesto print before breaking the output with a carriage return.

setScientific(), scientific()
Whether or not to use scientific notation in output formatting.

set sSpaci ng(), spacing()
Number of spaces between each dataitem. For POOMA multicomponent types such as Vect or and Tensor , this
is spaces between each whole object.

Thepri nt () methodsof Pri nt Array are member templates:

tenpl ate<class S, class A>
void print(S &, const A &) const;

tenpl ate<class S, class A class Donai nType>
void print(S &, const A &, const Donmmi nType &d) const;

These take an output stream, a container object, and an optional domain object for explicitly subsetting the container. They
work with POOMA Fi el d, Array, and Dynam cAr r ay container objects (including attributes from Par t i cl es),
but are not restricted to these. The only restrictions are that the container must export an enumvalue di nensi ons, such
asArray: : di mensi ons, and must have an array-indexing capability such that

operator()(int io, int i1, ..., int iN) returnsacontained datavaue. (Here, N=di nensi ons-1.)

file:///E|/r2/htmiftut-11.html (3 of 8) [11/1/1999 7:02:41 PM]

POOMA Tutorial 11: Text Input and Output

If you passin aview of an Ar r ay, for example, to the first prototype, the output will show zero-based, unit-stride
indexing rather than the original-Ar r ay indexes specified by the view. To avoid this, use the second prototype and passin
the whole Ar r ay and a view-subsetting domain object, such asa Range, separately. These code snipsillustrate the
difference, and show what the output islikefor a3D Ar r ay:

Range<3>r (Range<1>(2, 10, 2), Range<1>(1, 3, 1), Range<1>(3));
Array<3> a(20,20,20); // ... assign values to a ...

I nf orm pout ; /1 An out put stream
PrintArray pa; // Use defaults for formatting paraneters

pa.print(pout, a(r));
prints

(000: 004: 001, 000, 000) = 2.5 4.5 6.5 8.5 10.5
(000: 004: 001, 001, 000) = 2.5 4.5 6.5 8.5 10.5
(000: 004: 001, 002, 000) = 2.5 4.5 6.5 8.5 10.5
(0:4:1,0:2:1,1)
(000: 004: 001, 000, 001) = 2.5 4.5 6.5 8.5 10.5
(000: 004: 001, 001, 001) = 2.5 4.5 6.5 8.5 10.5
(000: 004: 001, 002, 001) = 2.5 4.5 6.5 8.5 10.5
(0:4:1,0:2:1,2)
(000: 004: 001, 000, 002) = 2.5 4.5 6.5 8.5 10.5
(000: 004: 001, 001, 002) = 2.5 4.5 6.5 8.5 10.5
(000: 004: 001, 002, 002) = 2.5 4.5 6.5 8.5 10.5
while
pa. print(pout, a, r);
prints
~~~~~~~~~~~~~~ (2:10:2,1:3:1,0: 2: 1) ~~~~~~~~~~~~~~
(2:10:2,1:3:1,0):
(002: 010: 002, 001, 000) = 2.5 4.5 6.5 8.5 10.5
(002: 010: 002, 002, 000) = 2.5 4.5 6.5 8.5 10.5
(002: 010: 002, 003, 000) = 2.5 4.5 6.5 8.5 10.5
(2:10:2,1:3:1,1):
(002: 010: 002, 001, 001) = 2.5 4.5 6.5 8.5 10.5
(002: 010: 002, 002, 001) = 2.5 4.5 6.5 8.5 10.5

file:///E|/r2/html/tut-11.html (4 of 8) [11/1/1999 7:02:41 PM]



POOMA Tutorial 11: Text Input and Output

(002: 010: 002, 003, 001) = 2.5 4.5 6.5 8.5
(2:10:2,1:3:1, 2):

(002: 010: 002, 001, 002) = 2.5 4.5 6.5 8.5
(002: 010: 002, 002, 002) = 2.5 4.5 6.5 8.5
(002: 010: 002, 003, 002) = 2.5 4.5 6.5 8.5

dbpri nt () and Related Functions

10.5

10.5
10.5
10.5

Many debuggers have a command prompt or expression-evaluation window and allow interactive calling of functions with
simple arguments. Few, if any, of these debuggers have a convenient means to invoke template functions even when the
templates have been instantiated in the executable code; and none allow interactive construction of objects or invocation of

objects member functions, whether the associated class and/or member functions are templated or not.

Recognizing this, we provide the dbpr i nt () function templates, which are a procedural interface to the
PrintArray:: print() member templates:

t enpl at e<cl ass Cont ai ner >
voi d dbprint(const Container &c);

t enpl at e<cl ass Cont ai ner, class Domai nType>
voi d dbprint(const Container &c, const Domai nType &domai n);

t enpl at e<cl ass Cont ai ner >
voi d dbprint(const Container &, const int & 0);

t enpl at e<cl ass Cont ai ner >
voi d dbprint(const Container &c, const int & 0, const int & 1);
/1

t enpl at e<cl ass Cont ai ner >
voi d dbprint(const Container &c, const int &0, ..., const int & 20);

The first two prototypes map directly tothe Pri nt Array: : pri nt () functions described in the previous section. The
remaining prototypes are for printing single container elements with scalar indexing, and for printing views using sets of

integers for base, bound, and stride values in the various dimensions. Prototypes for 1 through 21 integer arguments,

skipping {11,13,17,19,20}, allow for "sensible" interpretation of lists of integers as single-element or multi-element views

of containers having dimensionality 1 through 7:

(base,bound) 0:i0-1:1
gi . single | foreach |(basebound,stride)| - -h
Imensions element | dimension; |for each dimension d'l n eac
all stride 1 imension

1 ] 1 2 3 1
| 2 ] 2 4 6 1
3 ] 3 | 6 | 9 | 1
4 y 4 8 12 1
| 5 ] 5 10 15 1
| 6 ] 6 12 | 18 | 1
| 7 ] 7 | 14 | 21 | 1

Interpretation of various numbers of i nt & arguments for different dimensionilities.

You may call any of these functions from your source code, of course, and the compiler will instantiate the appropriate

file:///E|/r2/htmiftut-11.html (5 of 8) [11/1/1999 7:02:41 PM]



POOMA Tutorial 11: Text Input and Output

template instances and underlying Pri nt Array: : pri nt () instances. For caling interactively from a debugger, you
must make the extra step of adding non-template wrappers for your specific container types, so that the underlying
template instances are compiled into your executable. The following code snip illustrates this:

/1 dobal typedefs; useful in nmaking user-defined functions bel ow

const unsigned D = 2;

t ypedef UnifornRectilinear Mesh<d> Mesh_t;

t ypedef Fi el d<Di screteCeonetry<Cell, Mesh_t>, double> ScalarField_t;

t ypedef Fi el d<Di screteCeonetry<Cell, Mesh_t>, Vector<D> > VectorField_t;
t ypedef Array<D, double, ConpressibleBrick> ScalarArray_t;

typedef Array<D, Vector<D>, ConpressibleBrick> VectorArray_t;

class Atons : public Particl es<SharedBrickUniform {
public:
/1 Particle attributes:
Dynam cArray<Vect or <D>, SharedBrick> r;
Dynani cAr ray<Vect or <D>, SharedBri ck> v;
/[l ... rest of class definition ....
/1l Constructor: set up layouts, register attributes
At oms(const Uni formiayout &pl) : Particl es<SharedBrickUnifornme(pl)
{
addAttri bute(r);
addAttribute(v);

}
3
t ypedef Dynam cArray<Vector<D>, SharedBrick> VAttribute t;

/1 User-defined nontenplate dbprint()-type functions:
voi d sfdbprint(const ScalarField t &) { dbprint(f);
voi d vfdbprint(const VectorField_t &) { dbprint(f);
voi d sadbprint(const ScalarArray_ t &) { dbprint(a);
voi d vadbprint(const VectorArray t &) { dbprint(a);
voi d pdbprint(const VAttribute t &pa) { dbprint(pa);

e o o

/1 Subsetting functions:
/1 N B.: these have to have separate names; sone debuggers aren't smart enough
/1 to understand multiple prototypes of function with sanme nane.
void esfdbprint(const ScalarField t &, int i) { dbprint(f,i); }
voi d rsfdbprint(const ScalarField_t &, int baseO, int boundoO,
int strideO, int basel, int boundl, int stridel)
{ dbprint(f, baseO, boundO, stride0O, basel, boundl, stridel); }
voi d epdbprint(const VAttribute t &pa, int i) { dbprint(pa, i); }
void rpdbprint(const VAttribute t &pa, int base, int bound, int stride)
{ dbprint(pa, base, bound, stride); }

int main(int argc, char* argv[])
{
/1 Make and Arrays, and sone Fields with GuardLayers<D>(2)
ScalarField_t s(...);
VectorField t v(...);
Scal arArray_t sa(...);
VectorArray t va(...);

/1 Make Atons object:

At ons atons(...);
at ons. gl obal Creat e(20);

file:///E|/r2/htmiftut-11.html (6 of 8) [11/1/1999 7:02:41 PM]



POOMA Tutorial 11: Text Input and Output

//... Assign values to all these..

/1l ...Stop the debugger sonewhere down here..

Note that you must define a separatel y-named non-template function for each different fully-specified data type you want
to examine interactively from the debugger (specified values for al template parameters of Ar r ay or Fi el d, for
example). Thisisabit cumbersome, but can be worth the trouble.

Following is a screen-shot from an example session running the complete program sketched above, illustrating how to call
the user-defined dbpr i nt () wrapper functions. Calling syntax may vary from one debugger to the next. In this case, the
debugger isdbx running on SGI IRIX 6.5. It is stopped at a breakpoint in mai n() :

(dbx) ccall dbSet CarRet ur n(5)
(dbx) ccall sfdbprint(&s)
( -2:004:001, -2) = -1.5 -0.5 0.5 1.5 2.5
3.5 4.5
( -2:004:001, -1) = -1.5 -0.5 0.5 1.5 2.5
3.5 4.5
( -2:004:001,000) = -1.5 -0.5 0.5 1.5 2.5
3.5 4.5
( -2:004:001,001) = -1.5 -0.5 0.5 1.5 2.5
3.5 4.5
( -2:004:001,002) = -1.5 -0.5 0.5 1.5 2.5
3.5 4.5
( -2:004:001,003) = -1.5 -0.5 0.5 1.5 2.5
3.5 4.5
( -2:004:001,004) = -1.5 -0.5 0.5 1.5 2.5
3.5 4.5
(dbx) ccall esfdbprint(&s, 1,1,1)
(000, 000) = 0.5
(dbx) ccall rsfdbprint(&s, 1,3,2, 1,2,1)
(001: 003: 002, 001) = 1.5 3.5
(001: 003: 002, 002) = 1.5 3.5
(dbx) ccall dbSet CarRet urn(2)
(dbx) ccall pdbprint(&atons.r)
(000: 019:001) = ( 1. 965, 2.024) ( 1. 549, 1.807)
( 0. 7699, 2.476) ( 0. 8934, 2. 369)
( 2. 401, 1.617) ( 0. 7499, 2.148)
( 0. 987, 2.125) ( 0. 5183, 2. 347)
( 1.792, 1.669) ( 1.192, 1.937)
( 0.9148, 2.503) ( 2.114, 1.823)
( 2. 099, 1.19) ( 1. 855, 1.124)
( 1.68, 0.4495) ( 0.2164, 0. 5908)
( 1. 647, 1.128) ( 1. 36, 1.131)
( 2. 836, 1.302) ( 0. 06326, 0.4787)
(dbx) ccall epdbprint(&atons.r, 2)
(002) = ( 0. 7699, 2.476)
(dbx) ccall rpdbprint(&tonms.r, 2, 6, 2)
(002: 006: 002) = ( 0. 7699, 2.476) ( 2. 401, 1.617)
( 0. 987, 2.125)

(dbx)

Note that the first function call, to print the entire Fi el ds, includes the global guard layers. Calling dbpri nt () (or
sf dbpri nt () ) from your source code, you could passins(),or s(s. physi cal Domai n() ), to exclude the global
guard layers; thisis not possible interactively.

ThedbSet Car Ret ur n() invocationsillustrate more of the POOMA dB* () function family. Theseinvoke the
corresponding Pr i nt Ar r ay functionson aglobal Pri nt Ar r ay object maintained internally by POOMA.. This setsa

file:///E|/r2/html/tut-11.html (7 of 8) [11/1/1999 7:02:41 PM]



POOMA Tutorial 11: Text Input and Output

format state that persists from one interactive function call to the next. Here is the set of these functions. Refer to the

previous section on Pr i nt Ar r ay for their meanings:

i nt dbDomai nW dt h() ;

voi d dbSet Domai nW dt h(i nt val);
i nt dbDat aWdt h();

voi d dbSet Dat aW dt h(int val);

i nt dbDat aPreci sion();

voi d dbSet Dat aPreci sion(int val);
i nt dbCarReturn();

voi d dbSet Car Return(int val);
bool dbScientific();

voi d dbSet Scientific(bool val);
i nt dbSpaci ng();

voi d dbSet Spaci ng(int val);

Two additional functions allow toggling between the default Inform object used by dbprint() and one or more user-defined

Inform objects:
voi d dbSetInform(Inform & nform

Replace the default | nf or mobject with the input object.
voi d dbSwapl nf or nq()

After apreceding dbSet | nf or n() , toggles between the input | nf or mobject and the default. That is, repeated

callstodbSwapl nf or m() switch back and forth between the two | nf or rs.
[Prev] [Home] [Next]

Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/htmiftut-11.html (8 of 8) [11/1/1999 7:02:41 PM]


http://www.acl.lanl.gov/pooma/

POOMA Tutorial 12: Object I/O

Parallel"Object-Oriented ™
Methods.and Applications™

POOMA Tutorial 12
Object I/O

Contents:

Overview

Object Serialization and Object Persistence Models

Design of POOMA /0O

What'sin POOMA Version 2.2

Using POOMA 1/0O

The Object&et Interface
ObjectSet Constructors
ObjectSet: : open()
ObjectSeat: :flush() and ObjectSet: : close()
ObjectSet: . store() and ObjectSet::retrieve()
Queries on ObjectSet

Data Types Supported in POOMA 2.2

Use Case
Doof2d Example Modified for POOMA /0O

Overview

The POOMA framework has been engineered to support rapid development of scientific and engineering
applications. POOMA providesits user's with a high-level C++ language interface for creating numerical
applications optimized for performance on platforms ranging from desktop computers to parallel
supercomputers with thousands of processors. POOMA data abstractions and programming models are
generdl, flexible, and user-extensible.

The POOMA 1/0 classes have been designed to provide efficient 1/0 services while keeping to the design
philosophy of POOMA. POOMA /O supports the abstractions that make the POOMA framework powerful
and flexible by making the classes that embody them persistent. As with the rest of POOMA, the I/O system
is both flexible and extensible by users as well as by developers.

file:///E|/r2/html/tut-12.html (1 of 13) [11/1/1999 7:02:48 PM]



POOMA Tutorial 12: Object I/O

Object Serialization and Object Persistence Models

There are two broad categories of data management appropriate to object-oriented applications. Thefirst is
object serialization, and the second is object persistence.

The simplest 1/0 model is based on inserting data items into input or output streams. Datais typically
extracted in the same order as originally stored. Object-oriented applications present special problemsfor 1/0
since the the ability of usersto add new data types means that many if not most types are unknown to the
system. Systems that support object serialization usually have some means of prescribing how the data
contained in complex typesis to be marshaled and inserted into a stream. Once this definition isin place, new
object types can be read or written in the same way asintrinsic types. C++ alows usersto overload the
insertion operators (<< and >>) for this very purpose. However, as the structure of data types becomes more
complicated, the burden falling on users to serialize new types for storage can be quite heavy. Several
languages and frameworks provide means of facilitating object serialization. These include, for example,
JAVA and Python.

The next level of sophistication in object storage is object persistence. In an object persistence model, objects
are stored as a collection of discrete entities, each individually retrievable at random from a collection of
objects. A full-featured object-oriented database (OODB) knows enough about the structure of the object
typesin its collection to perform sophisticated queries based on object metadata.

There is often a tradeoff between these two categories of services. Object serialization istypically more
efficient than object database persistence since datais simply marshaled and inserted into a stream. However,
the requirement that data-consuming applications know what types of objects to expect aswell astheir
sequence often leads to overly tight coupling between data-producing and data-consuming applications. Thus
seridization is fine for monolithic applications performing what amounts to state dumps, but not as good for
multi-application collaborative environments. On the other hand, there are many situations when one would
just as soon not have the overhead of an object-oriented database no matter how streamlined.

Object-oriented applications benefit enormously from object-oriented data management. After all, the
principle reason many programmers prefer object-oriented languages is so that they can create and exploit
new data types. Object storage systems provide away to store and retrieve user-defined types as easily as
intrinsic types.

Design of POOMA 1/0

The goal of POOMA 1/0 isto provide object serialization and object database persistence models, both of
which have been shown to be extremely useful in object-oriented frameworks. The challenge is to make both
of these capabilities flexible enough and lightweight enough to satisfy the requirements of the POOMA
framework for extensibility and performance. Here we discuss the basic ideas behind the design of POOMA
I/O in order to give the reader afeeling for how these sometimes conflicting requirements can be satisfied
simultaneously.

Thefirst level of the design is comprised of a set of classes called the storage classes that are transparent to
users. They organize any given storage resource into byte records. The system does not necessarily know the
internal structure of a byte record, only its length in bytes. Records are elements of byte arrays. Each array is
independently accessible within a storage resource and each record or element of abyte array isalso
independently addressable. A range of elements within a byte array can be read or written in one operation.
These byte arrays are automatically extended whenever an operation writes past the current number of
elements. Arrays are members of a collection called a storage set which serves as the logical interface to
storage in terms of arrays. The physical storage in thisimplementation isadisk file, but a storage set isan

file://[E[/r2/html/tut-12.html (2 of 13) [11/1/1999 7:02:48 PM]



POOMA Tutorial 12: Object I/O

abstraction barrier that need not be associated with afile in general. For example, future implementations
may support storage sets based on databases or remote application resources.

The second level is made up of the object storage classes. These classes view storage as a set of typed objects
called an object set. Any instance of atype supported by the I/O system can be stored along with a
descriptive label in one operation. Object sets can be queried to reveal the number of objects contained, the
types of objects contained, the number of objects of each type, and the labels of each object. A single
operation is sufficient to retrieve an object given either its name, or itsinstance ID which is equivalent to its
position in the list of object instances for a given type.

The storage of specific typesis enabled by specializations of two generic classes: object serializers and
object adapters. As one would infer from the discussion above, serializers serialize objects to a stream,
whereas adapters adapt specific types to storage and retrieval in an object set. Adapters often use the services
of serializers. The object storage classesin turn use the services provided by the storage set and byte array
classes.

To support a different storage type or format, or to optimize 1/0O for performance, one need only modify the
basic storage classes thus |eaving the object storage classes unchanged. Severa different types of storage can
coexist in the same application. The benefit of this design isthat new types can be supported simply by
creating new serializer and adapter specializations. Our intent is to allow users as well as developers to
extend the range of supported types by writing a small amount of new code, or by writing a simple high-level
description of the new classes.

The main goal of the POOMA 1/0 design isto achieve a high level of support for object storage and
management without incurring the overhead of afull-featured object-oriented database. Straightforward
storage and retrieval operations are provided based on simple queries.

It was also considered important to expose the basic 1/0 mechanisms through the storage set and byte array
classes so that developers could gauge the performance implications of an implementation based on generic
storage abstractions. The separation of basic I/0 from object management permits performance to be
optimized without requiring modificationsin any portion of the object management layer.

What's in POOMA Version 2.2

[/O for Version 2.2 of POOMA is experimental. As such it does not support the full scope of capabilities
described above, nor the full complement of POOMA framework objects. The reason for including it in this
release isto get user feedback and suggestions as early as possible.

Historically, an object persistence model was considered first and object serialization later. The compatibility
of these two models, aswell as a straightforward solution for supporting and leveraging both, emerged later
in design iteration cycles. Thus, in this release users can store and retrieve POOMA objectsin an object set,
but cannot serialize the same objects to a standard output stream. This feature will be added in the next
release.

Since storage adapters are currently hand-crafted, there are only afew basic types supported at this time.
Experience gained in writing adapters and serializers for this release will allow us to semi-automate the
process of adding support for new types. Some capability of thiskind aswell asfull coverage of al POOMA
objectsisintended for the next major release of the software.

This release supports standard native binary 1/O. Future releases may support storage using the HDF5 format.

file://IE[/r2/html/tut-12.html (3 of 13) [11/1/1999 7:02:48 PM]



POOMA Tutorial 12: Object I/O

Using POOMA 1/O

This section describes the basic process of storing and retrieving objects in POOMA. The essential
mechanism is very simple. Each supported type may be stored in a collection of objects called an object set.
An object set is created, opened, and closed like afile. It has three templated member functions to perform
object storage and retrieval operations, a store() function and two variants of retrieve() depending on whether
the object isto be recovered by name or by ID. Simple query functions of the object set reveal its contents.
Objects can be added to existing objects in an object set, or al objects can be removed upon opening. Once
stored, an object cannot be deleted separately. To retrieve an object, the user must supply a default instance
of the corresponding type. A typical session in which a user stores data would be as follows:

« Create an object set giving it aname. This may be either a new object set or an existing one to which
objects are to be added. To store objects, the access mode must be appropriate for write access.

« Store one or more objects supplying a name or label for each. Names need not be unique.
o Close the object set.
A session in which a user retrieves objects could be described in the following way:

» Create an object set supplying a name matching an existing object set. To retrieve objects the access
mode must be appropriate for reading.

« Create default instances of objects matching the ones to be retrieved.
« Retrieve the objects by giving either names or I1Ds.
o Closethe object set.

To aid in retrieving objects, a set of basic queriesis provided by the object set interface. The essential
functionality of object set queries may be summarized as follows:

« Report the number of distinct typesin the object set.
« Report the name of atype given itsindex k, wherek = 0, ... (number of types-1).
« For agiven type indicated by type name or index, report the number of instances.

« For agiven typeindicated by type name or index k, report the name of object j wherej =0, ...,
(number of instances -1).

The ID of an object is an integer (type long) that by convention is the position of the object in the list of
instances of that type. That is, if an instance of a given typeis second on thelist, itsID is 1 (indexed from
zero). The primary key for objects contained in an object set is the pair of attributes comprised of itstype
name or type index and itsinstance ID. Names are user-defined |abels and are not primary keys, i.e., they are
not unique and in fact may be null. If arequest is made to retrieve an object by name, the object set restores
the first instance that matches the name.

The following section provides details of the object set interface.

The ObjectSet Interface

The object set interface is the main interface to object storage. To store and retrieve objects, an instance of an
object set must exist in the user's application with an access mode appropriate to the intended storage
operations.

file://[E[/r2/html/tut-12.html (4 of 13) [11/1/1999 7:02:48 PM]



POOMA Tutorial 12: Object I/O

ObjectSet Constructors

The following constructors create instances of object sets:

ObjectSet() Thisisthe default constructor. Constructed this way, an object set is unusable

until an open() operation placesit in an appropriate state attached to a particular storage
resource.

ObjectSet(const std::string& name, StorageResour ceType type, Stor ageAccessM ode
mode) Thisisthe primary constructor. The arguments are:

name The name of the object set. For file-based storage (the only type for this
release) thisis literally the name of thefile.

type Thisisaninstance of an enumerated type called StorageResourceType
whose allowed values for this release are:

StdStorage Standard binary file

mode An instance of an enumerated type called StorageAccessMode that defines
the access mode. The allowed values are:

’storagel n ]Read-only access
’storageOut ’Writeonly

storageOutTrunc  |Write-only; destroy
dataif the resource
exits
storagel nOut Read-write; append
new data to existing
data

storagel nOutTrunc |Read-write; destroy
existing dataif the
resource exists

Example:

bj ect Set obset ("DataFile.std", Std5Storage, storagel nQutTrunc);

Creates an object set obset as a binary file whose name will be "DataFile.std." Thefileis opened

for read-write, but if afile by that name already exists, all exisiting datawill be destroyed (i.e.,
the file will be truncated).

ObjectSet::open()

The open() operation assumes the existence of an object set and assumes that it has either been default
constructed, or that it has been previously closed. There are two variants. They are:

int open(const std::string& name, StorageResour ceType type, StorageAccessM ode mode)
Opens a default object set or closed set assuming all attributes of the object set are new. The
arguments have the same meaning as in the main constructor. It returns O if successful.

int open(const std::string& name, StorageAccessM ode mode) This variant assumes that the

file:///E|/r2/html/tut-12.html (5 of 13) [11/1/1999 7:02:48 PM]



POOMA Tutorial 12: Object I/O

storage resource type has aready been set. It generates an error if the object set has only been
default constructed, and returns O if successful.

Examples:

st at us= obset. open("Dat aFil e.std", storageln);
assert (status==0);

Opens the previous file (assuming it has been closed) in read-only mode.

stat us= obset.open("OQ herData.dat", stdStorage, storageQutTrunc);
assert (status==0);

Having closed the previous object set, this opens a completely different resource of a different
type (standard binary in this case) for output, destroying any pre-existing version.

ObjectSet::flush() and ObjectSet::close()

These functions respectively flush and close the object set. They take no arguments. The flush() function
ensures that all objects are persistent, and close() closes the file or resource. close() invokes flush() before
closing the resource.

ObjectSet::store() and ObjectSet::retrieve()

These functions perform the main storage operations. There are two versions of retrieve() depending on
whether one wants to retrieve an object by name or by ID.

template <class T>

long store(T& t, const std::string& objectName) Stores an instance of the given type along
with a user-defined label. The function returns the object ID assigned by the object set. Valid
IDs are zero or greater.

t The given memory-resident object instance.
objectName The user-assigned name or label to be associated with this instance.

template <class T>
int retrieve(T& t, longid) Retrieves an object givenits ID. It returns O if successful.

t  The memory-resident object instance to be instantiated from the persistent

version.

id ThelD for the stored instance.
template <class T>
int retrieve(T& t, const std::string& objectName) Retrieves an object given its label. Labels
are not unique. If there is more than one object of the given type with the same label, it restores
thefirst one. It returns O if successful.

t The memory-resident object instance to be instantiated from the persistent

version.

objectName The user-assigned name or label associated with thisinstance.

Examples:

int nTi meSt eps=1000;
| ong i d= obset.store(nTi neSteps, "Nunber of Tinme Steps");
assert (i d>=0);

Stores the given int instance with the associated label "Number of Time Steps.” An integer

file:///E|/r2/html/tut-12.html (6 of 13) [11/1/1999 7:02:48 PM]



POOMA Tutorial 12: Object I/O

(long) ID isreturned.

i nt nSteps;
i nt status= obset.retrieve(nSteps,id);
assert (status==0);

Retrieves the value previously stored given the ID, presumably known. Alternatively one could
use:

status= obset.retrieve(nSteps, "Nunber of Tinme Steps");
assert (status==0);

Queries on ObjectSet

The following functions allow applications to query the status of an object set:
const std::string& name() const  Returns the name of the object set.

StorageAccessM ode mode() const  Returns the current access mode.
bool isOpen() const Boolean operation to check whether the set is open.

bool isClosed() const Boolean operation to check whether the set is closed.
These functions query the contents of an object set:
int numTypes() const  Returns the number of typesin the set.

int numlnstances(const std::string& typeName) Returns the number of instances of a given
type referred to by type name.

typeName The name of the type in question.

int numlnstances(long typel D) const Returns the number of instances of a given type
referred to by typeID.

typelD ThetypeID or index. Within a given object set, the types contained are
indexed from O, ..., (number of types -1).

const std::string& typeName(long typel D) const Returns the type name given atype ID.
typelD ThetypeID or index.

long typel D(const std::string& typeName) Returns the type ID given the type name.
typeName The name of the typein question.

const std::string& objectName(const std::string& typeName, longinstancelD) Returns
the object name given atype name and instance ID.

typeName The name of the type in question.
instancelD Theinstance of this type. Instances are numbered from O, ..., (number
of instances -1) for agiven type.

const std::string& objectName(long typel D, long instancel D)  Returns the object name
given the type ID and the instance ID.

typeName The name of the typein question.
instancelD  The instance of thistype.

Examples:

The following is based on the premise that the application has opened an existing file by creating an instance
called obset in read-only mode. The application generates a report on the contents of the file.

file:///E|/r2/html/tut-12.html (7 of 13) [11/1/1999 7:02:48 PM]



POOMA Tutorial 12: Object I/O

std::string obset Nanme= obset. nane();
I nt nTypes= obset. numlypes();
std::cout<<"Contents of ObjectSet "<<obsetNane<<std::endl;

std::cout<<"Nunber of types = "<<nTypes<<std::endl;

I f(nTypes! =0) {
std:: cout <<"Type Type Name Nurmber of Instances"<<std::endl;
i nt num nst ances;
int j;

for(int i=0; i<nTypes; i++){
num nst ances= obset. num nstances(i);
std:: cout <<j << "<<obset.typeNane(i)<<" "

<<num nst ances<<std: : endl ;
std:: cout <<" I nst ance bj ect Nane"<<std::endl;
for(j=0; j<num nstances; |++){
st d:: cout <<" "< << "
<<obset . obj ect Name(i, ] ) <<std::endl;

}
std::cout<<std::endl;

}

}

The next exampleis based on asimilar premise. In this case, the application knows that there are several
instances of complex<double> called "Field Vaue." Complex numbers are a templated type in C++ whose
conventional type designation in POOMA /O is"std::complex<T>." The application collects the values by
retreiving each instance of this type that matches the name and putting it in a standard C++ vector container.

vect or <st d: : conpl ex<doubl e> > fiel dval s;
st d: : conpl ex<doubl e> conpl exVal ;
I nt nlnstances= obset. num nstances("std: : conpl ex<T>");
I nt status;
for(int i=0; i<nlnstances; i++){
i f (obset. obj ect Nanme("std::conpl ex<T>",i)=="Field Val ue"){
status= obset.retrieve(conplexVal,i);
assert (status==0);
fieldval s. push_back(conpl exVal ) ;

}
Data Types Supported in POOMA 2.2

The range of data types supported by the object persistence capability in POOMA Version 2.2 is considerably
short of the full scope of POOMA, but basic enough that it should be useful. It should also give a reasonable
demonstration of this emerging POOMA framework capability. In the next version, not only with the range
of types be considerably broadened, but serialization as well as pesistence will be supported. There will also
be tools to facilitate inclusion of new types by users or developers. For now, the following are supported
entities:

Intrinsic or atomic data types:

Type |Designation  |Description
’int "int" |Nativeint

file:///E|/r2/html/tut-12.html (8 of 13) [11/1/1999 7:02:48 PM]



POOMA Tutorial 12: Object I/O

’Iong ’"Iong" |Native long

float  ["float" |Nativef|oat

double |"double’ Native double

Complex number instances:

Type Designation Description

std::complex<T> ["std::complex<T>" |Complex
numbers
from the
standard
numerical
library. T
may be
float or
double.

Standard library strings:

Type

|Designation |Description

’std::string

"std::string” [Standard string of
arbitrary length.

Pooma Vector instances:

Type Designation Description

Vector<Dim, T,Engine=Full>|"Vector<Dim,T>" |Pooma V ector
class based on the
standard Full

engine where the
dimension D may
beany size,and T
isint, long, float,
double, or
std::complex<T>.

Pooma Brick and Compressible Brick Arrays:

Type

Designation

file:///E|/r2/html/tut-12.html (9 of 13) [11/1/1999 7:02:48 PM]

Description




POOMA Tutorial 12: Object I/O

Array<Dim,T,Brick> and "Array<Dim,T,Brick>" and
Array<Dim,T,CompressibleBrick> |"Array<Dim,T,CompressibleBrick>"
respectively

Pooma Array of
dimension
Dim=1,... 7 of
Brick or
CompressibleBrick
enginetypes. T
may beint, long,
float or doublein
thisrelease.

Pooma Intervals:

Type Designation Description
Interval<Dim> ["Interval<Dim>" |Pooma
Interval of
dimension
Dim=1,... 7.
Use Case

The following use case demonstrates how object persistence in POOMA Version 2.2 would be used in an
application. Thisisamodification of the Doof2d example (simple diffusion calculation) given in another

tutorial. The additional 1/0 instructions are highlighted in italics.

Doof2d Example Modified for POOMA 1/O

/'l create arrays
Array<2> a, b;

/'l create an object set to store the data,;
/'l truncate the file if it already exists

(bj ect Set dat aSet (" Doof 2dDB. dat ", stdStorage, storageCQutTrunc);

/'l get problemsize

i nt n;

std::cout << "Size (typically 100-1000): *";
std::cin >> n;

int i, niters = n/2

/'l create a description for this run using a string stream

/'l and then store as a string variable

std::ostringstreamstrstrm

strstrn<<"This is a run of the Doof2d exanple wth "
<<" problem size N="<<n<<"."<<std::endl;

strstrnmk<"Stencils were not used in this run."<<std::endl;

std::string descr= strstrmstr();
dat aSet . store(descr, " Run Description");

file:///E|/r2/html/tut-12.html (10 of 13) [11/1/1999 7:02:48 PM]




POOMA Tutorial 12: Object I/O

/'l store the problemsize and nunber of iterations
dat aSet . store(n, "Probl em Si ze");
dat aSet . store(niters, "Number of Iterations");

/'l create array domain and resize arrays
I nterval <1> N(1, n);
I nt erval <2> domai n(N, N) ;

/'l store the problem domain interva
dat aSet . st or e(domai n, " Probl em Domai n I nterval ");

a.initialize(domain);
b.initialize(donain);

/'l get domains and constant for diffusion stenci
Interval<1> 1(2,n-1), J(2,n-1);
const double fact = 1.0/9.0;

/! store the nunerical constant factor used to cal cul ate
dat aSet . store(fact, "Nunmerical Factor");

/'l reset array el ement val ues
a = 0.0; b=0.0;

doubl e initial Val
a(niters,niters)

1000. O;
initialVal;

/'l store the initial peak val ue
dataSet.store(initialVal,"Initial Peak Val ue");

/'l Run 9pt doof 2d wi thout coefficients using expression
std::cout << "Diffusion using expression ..." << std::endl;
std::cout << "iter =0, amd=" << a(niters,niters) << std::endl;
for (i=1; i<=niters; ++i) {
b(l,J) = fact * (a(l+1,J+1) + a(l+1,J ) + a(l+1,J-1) +
a(l  ,J+1) +a(l ,J3 ) +a(l ,J3-1) +
a(l-1,3+1) + a(l-1,3 ) + a(l-1,3-1));
a = b;
std::cout << "iter =" << i << ", amd =" << a(niters,niters)
<< std::endl;

/'l for each iteration store the result array
/'l | abeled by iteration nunber
strstrmstr("");

strstrnk<"Result at iteration "<<i

dat aSet . store(a,strstrmstr());

}

dat aSet . cl ose();

file:///E|/r2/html/tut-12.html (11 of 13) [11/1/1999 7:02:48 PM]



POOMA Tutorial 12: Object I/O

If one were to write and execute the content report generator example given above on thisfile
the output would read:

Contents of CbjectSet Doof 2dDB. dat
Nunber of Types=5
Type Type Nane Nunber of Instances
0 std::string 1
| nst ance bj ect Nane
0 Run Description
1 i nt 2
I nst ance bj ect Nane
0 Probl em Si ze
1 Nurmber of Iterations
2 | nt er val <Di n» 1
| nst ance bj ect Nane
0 Probl em Domai n I nterva
3 doubl e 2
| nst ance bj ect Nane
0 Nureri cal Factor
1 Initial Peak Val ue
4 Array<Dim T, Bri ck>
(however many iterations)

| nst ance hj ect Nane

0 Result at Iteration 1
1 Result at Iteration 2
2 Result at Iteration 3

(however many iterations)

The next example assumes that the application programer has some familiarity with the data-producing
application. Let visArray(array,string) be the API to some hypothetical visualization tool that renders false
color images of POOMA 2d arrays where array isthe array and string is a standard string label for the plot.
The following code segment would take the database file generated by the modified Doof2d example and
produce plots.

hj ect Set dset (" Doof 2dDB. dat ", stdStorage, storageln);
int nlters;
i nt status;
status= dset.retrieve(nlters, "Nunber of Iterations");
assert (status==0);
std::string plotLabel;
Array<2> array,
for(int i=0;i<nlters;i++){
pl ot Label = dset. obj ect Nane("Array<Dim T, Bri ck>",1);
status= dset.retrieve(array,i);
assert (status==0);
vi sArray(array, pl ot Label ) ;
}
dset. cl ose()
There are several other ways that the data could be recovered assuming less familiarity with the application,
and using the object set queries to learn more. More sophisticated queries are needed in order to do a good
job of acquiring data when nothing a priori is known about the contents of a dataset. Such queries are
planned for the next version of POOMA.

file:///E|/r2/html/tut-12.html (12 of 13) [11/1/1999 7:02:48 PM]



POOMA Tutorial 12: Object I/O

[Prev] [Home] [Next]
Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/tut-12.html (13 of 13) [11/1/1999 7:02:48 PM]


http://www.acl.lanl.gov/pooma/

POOMA Tutorial 13: Compiling, Running, and Debugging POOMA Programs

Paralle]"Object-Oriented ™
Methods,and Applications .4

POOMA Tutorial 13
Compiling, Running, and Debugging
POOMA Programs

Contents:
Introduction
Compiling
Compiler Requirements
Installing and Configuring POOMA
How to Decipher Compiler Error M essages
Running
POOMA Runtime Arguments
Object-Based Initialization
Debugaing

Introduction

Thistutorial includes information on configuring and building the POOMA library, and application programs using
POOMA. It aso discusses some topics about running POOMA programs, and gives some anecdotal information about
debuggers and debugging.

Compiling

Compiler Requirements

POOMA has been extensively tested with the following C++ compilers:
« KAI C++ 3.3eor higher
Kuck and Associates (http://www.kai.com)
Most UNIX platforms, including Linux
« EGCS/GCC (snapshot after 5/15/99)
GCC Home Page (http://gcc.gnu.org)
Most UNIX platforms, including Linux
o« CodeWarrior Professiona 5
Metrowerks (http://www.metrowerks.com)
Macintosh, Windows 95/98/NT
o Intel C++ (part of VTune 4.0)
Intel (http://support.intel.com/support/performancetool s'vtune)
Windows 95/98/NT

Other compilers based on version 2.38 or later of the Edison Design Group (EDG) front-end may also be able to compile
POOMA. However, we know that CFront-based compilers, Visua C++ 5.0/6.0, and GNU C++ 2,91 do not support the ISO
features necessary to compile POOMA. These featuresinclude:

file:///E|/r2/html/tut-13.html (1 of 10) [11/1/1999 7:02:56 PM]


http://www.kai.com/
http://gcc.gnu.org/
http://www.metrowerks.com/
http://support.intel.com/support/performancetools/vtune

POOMA Tutorial 13: Compiling, Running, and Debugging POOMA Programs

« Default template arguments

« Partial ordering of function templates

« Member templates

« Explicit instantiation of templates

o ANSI/ISO keywordslikenmut abl e andt ypenane

« ANSI/ISO typeslikebool and atemplated complex number class

« ANSI/ISO castslikeconst _cast,stati c_cast,dynami c_cast,andrei nt er pret _cast
o RTTI (runtime type identification)

« Namespaces

« Exceptions

In addition, POOMA assumes afairly standard C++ library including:
o 1/O streams
« Standard template library
o Numerics
o Strings

Ideally, the library should support SO standard ".h-less" headers like <vect or > that place definitionsin the st d: :
namespace.

The compiler features listed above are an absolute requirement. For example, if your compiler does not support member
templates, there is no amount of work that will get POOMA to compile. If your compiler has limited support for these
features, it is worth trying to build the library, but there are no assurances of success. Minor deficienciesin the libraries can
also be worked around. In fact, we have had to use a mixture of .h-less and .h headersin order to work around various
compiler/library problems:

« .hversionsof C headers (e.g., mat h. h, not cnmat h)
reason: Intel/Microsoft platform doesn't have acmat h.

« .hversionof conpl ex. h
reason: complex math functions must be in same namespace as double/float versions for PETE (POOMA's expression
template engine) to work

POOM A -based programs can use either .h or non .h headers for everything else in the standard C++ library, but should of
course be consistent.

Installing and Configuring POOMA

The POOMA build system can handle several different configurations at once; this alows devel opers to building
I i bpooma. a and POOMA applications for several configurations at the same time. Each configuration is referred to asa
suite, and is described by a suitefile. Thisis the main file that the configuration script described below sets up when it runs.

Note: this configuration script is presently available only for Unix platforms. Programmers who are installing POOMA on
the Apple Macintosh, or under Microsoft Windows will need to change #def i ne definitions manually. Under
CodeWarrior, on both Macintosh and Windows, these definitions arein the file:

poora- 2. 2. 0/ src/ arch/ Met r ower ks/ Pooma. prefi x. h
If the Intel VTune C++ compiler is being used with Microsoft Visual C++ on Windows, the definitions that need to be
changed arein:

pooma- 2. 2. 0/ src/arch/ | ntel/PoomaConfi gurations.h

In addition, when the configuration script is run to set up a new suite, it will go through all the subdirectories and create a
directory called <sui t e> in each subdirectory that contains files that will be compiled (where <sui t e> isthe name of the
suite). As described below, the environment variable POOVASUI TE must be set to the value of the suite to compile after the
configuration script is run.

file:///E|/r2/html/tut-13.html (2 of 10) [11/1/1999 7:02:56 PM]



POOMA Tutorial 13: Compiling, Running, and Debugging POOMA Programs

The POOMA configuration script islocated in the top level of the POOMA distribution tree, and is called conf i gur e. It
iswritten in Perl, and does the following;

« Createsasuitefilecaled confi g/ <sui t e>. sui t e. nk (where <sui t e> isthe actual name of the suite) that has
settings for building POOMA.. The suitefileisincluded by the other makefilesin POOMA to get names of, and
arguments for, the compiler and linker. After a suite file has been generated using conf i gur e, developers set the
environment variable POOVASUI TE to the name of that suite, and run make. It isagood ideato set the variable
TMPDI Rto the name of atemporary directory at thistime as well. If thisis not done, the POOMA build system will
use/ t mp/ $POOVASUI TE, which might cause conflictsif two or more builds are being done simultaneously.

« Createsalibrary build directory called | i b/ <sui t e>, and puts several filesinit:
o amakefile
o a"stub" makefile, for useininstallation

o aPoonmaConfi gurati on. h file, with#def i ne statementsindicating how to build POOMA. Almost all
#def i nes take one of the following forms:

#def i ne SOVE_POOVA_VARI ABLE POOVA_YES
#def i ne ANOTHER _POOVA_VARI ABLE POCOVA_NO

o Does other small setup tasks so that POOMA can be built with a new suite.

The most useful argumentsfor conf i gur e are:
--arch <arch>

Specify an architecture to configure for. The directory conf i g/ ar ch has severa fileswith. conf extensions, one
for each combination of machine and compiler that the current version of POOMA supports. The recommended
procedure is to select an architecturefile, edit it if necessary, and thenrunconfi gure --arch <ar ch> (plus
any other options) from the top directory of the POOMA distribution. If the POOVASUI TE environment variableis
set, and you do not use the - - ar ch flag, the value of POOMASUI TE will be used instead. One or the other of these
methods must be used to specify the desired suite.

--suite <suite>

Specify the name of the suitefileand | i b/ <sui t e> build directory to create. This can be different than <ar ch>,
but if you do not givethe- - sui t e option, <ar ch> will be used. If the- - sui t e flag is not given then:

o if POOVASUI TE is set, that will be used for <sui t e>
o if POOVASUI TE isnot set, <ar ch> will be used.
--prefix <installdir>

This selects where to install POOMA after you have built the library. The | NSTALL file (located in the root directory
of the POOMA distribution, along with the LI CENSE file) describes the directory tree that gets created during
installation.

--opt or--debug
Select whether to build optimized or debug library by default.
--preinst or--nopreinst

If - - prei nst isused, the library will pre-instantiate versions of several classes for several types and dimensions.
This step is not necessary; the library will build more quickly if you do not use it, but applications may build more
quickly.

--exor--noex
Enable or disable exception handling. Some compilers produce more efficient code and compile faster when
exceptions are turned off.

--parallel or--serial

These flags determine whether POOMA will use SMARTS or not. If - - par al | el isgiven, the SMARTS header
fileswill beincluded and parallel evaluation will be done. Otherwise, all operations will runin serial.

SMARTS s the thread and dataflow package that POOMA uses for the multithreaded operation. It was also
developed at the Advanced Computing Laboratory, and is available on the same CD-ROM as POOMA. Thisrelease
of SMARTS only runs on Unix platforms; in order to use SMARTS with POOMA, you must:

o compile and install SMARTS before compiling POOMA; and

file:///E|/r2/html/tut-13.html (3 of 10) [11/1/1999 7:02:56 PM]



POOMA Tutorial 13: Compiling, Running, and Debugging POOMA Programs

o set the SMARTSDI R environment variable to the installation directory for SMARTS after installing SMARTS,
but before running POOMA's conf i gur e script.

This flag causes compilers and linkers to print very verbose output.

The mode table in an earlier tutorial summarizes the modes produced by different combinations of configuration flags.

Theconfi gur e scriptsaso has options that will add extra- | , - D, - L and other flags to your compilations. Run
confi gure -h toseeacompletelist of options.

After running conf i gur e and creating a suite file, set the environment variable POOVASUI TE to the name of the suite,
and run make. There is a makefile at the top level of the POOMA distribution, and inthel i b/ <sui t e> directory. When
make is finished, there should beal i b/ <sui t e>/ 1 i bpoona. a library file.

Thisfile can be used in one of two ways. Programmers who are extending POOMA can usel i bpooma. a without any
other work, since the library may need to be recompiled often. Such devel opers can build the programsin the benchmar ks
and exanpl es directories (such asexanpl es/ Doof 2d) by running make in those directories.

Programmers who are just using the library will have to install it. Typing make i nstal | will instal | i bpoona. a and
the necessary sourcefilesinthe<i nst al | di r > directory (specified with the - - pr ef i x flagto conf i gur e). Users
should then set the environment variable POOMVADI Rto <i nst al | di r >, and POOMAARCH to a string indicating the type
of build architecture. Thisis not the same asthe <ar ch> name used for configure, but isinstead just a string indicating the
type of machine, and for this release may be one of sgi 64, sgi n32, sgi 32, or |l i nux.

After doing all of this, users can go into any subdirectory under exanpl es or benchmar ks and run:

make -f Makefil e. user

Makefi |l e. user firstincludesa"stub" makefile from the directory wherel i bpoona. a isinstaled. This stub makefile
contains settings such as POOVA_| NCLUDES that are needed to build POOMA applications. For example, the
Makefil e. user fileinexanpl es/ Doof 2d contains the following:

### include the POOVA makefile stub, to get conpiler flags and libraries
i ncl ude $(POOVADI R)/ $( POOVAARCH) /| i b/ Makefi | e. pooma

### the nanme of the exanple code to conpile
EXAMPLE = Doof 2d

### the main target for this nmakefile
$(EXAMPLE) : $( EXAMPLE) . cpp

$( POOVA_CXX) $(POOVA CXX_DBG ARGS) -0 $(EXAMPLE) $(EXAMPLE). cpp
$( POOVA_| NCLUDES) $(POOVA_DEFI NES) $(POOVA LI BS)

How to Decipher Compiler Error Messages

POOMA makes extensive use of templates to achieve high performance. Unfortunately, this means that a simple mistake
often resultsin dozens of compiler error messages that are both long and obscure. These messages are often tough for
experienced C++ programmers to interpret and can be downright scary for newcomers to the language. Thereisno simple
formulafor dealing with these messages, but there are strategies that can reduce the pain associated with the process.

To begin with, consider the program below:

01 #include "Pooma/ Arrays. h"

02

03 int main(int argc, char *argv[])
04 {

05 Pooma: :initialize();

06

07 int p, *pp = &p;

file:///E|/r2/html/tut-13.html (4 of 10) [11/1/1999 7:02:56 PM]



POOMA Tutorial 13: Compiling, Running, and Debugging POOMA Programs

08 Array<l> z(6);

09 for (p =0; p <6, p++)
10 z(PP) = p;

11

12 Pooma: : finalize();

13

14 return O,

15 }

KCC 3.3 reports the following impressive set of error messages (please be patient while this scrolls past you):

"src/Array/Array. h", line 416: error: nane followed by "::"
nanespace narme
CTAssert (SDonmi n_t: : di mensi ons == di nensi ons);
N

must be a class or

detected during instantiation of "ArrayVi ewRet urn<ConstArray<Dim T,
Engi ne>: : Engi ne_t, Tenpor ar yNewDonai n1<Const Array<Dim T,
Engi ne>: : Dormai n_t, Subl>::SliceType_t>::Type_t Array<Di m
T, Engi neTag>::operator()(const Subl & const [with D nm=l,
T=doubl e, Engi neTag=Brick, Subl=int *]" at line 10 of

"test.cpp"

"src/Array/ Array. h", line 416: error: class "PoonaCTAssert<<error-constant>>"

has no nenber "test"
CTAssert (SDomei n_t:: di nensi ons == di nensi ons);
N

detected during instantiation of "ArrayVi ewRet urn<ConstArray<bDim T,
Engi ne>: : Engi ne_t, Tenpor ar yNewDonai nl<Const Array<Dim T,

Engi ne>: : Domai n_t, Subl>:.:SliceType_t>::

T, Engi neTag>::operator()(const Subl &)
T=doubl e, Engi neTag=Brick, Subl=int *]"
"test.cpp"

Type_t Array<Di m
const [with Dimel,
at line 10 of

"src/ Domai n/ Donmai nTraits. Loc. h", line 190: error: a value of type
"Domai nTraitsScalar<int *, int *>: :Elenent _t" cannot be assigned to
an entity of type "Dommi nTraits<Loc<l>>::Storage_ t"

dom = Donmai nTrai t s<T>::get First(newdon;
N
det ected during:
instantiation of "void

Domai nTrai t s<Loc<1>>: : set Dormai n( Domai nTrai t s<Loc<1>>::Sto
rage t & const T & [with T=int *]" at |ine 286 of

"src/ Donmai n/ Donmmi n. h"

instantiation of "void SetDonmai nFunct or <DT, ST,
wi | dcar d>:; : set Domai n( ST &, const T &)
DT=Donmmai nTr ai t s<Loc<1>>,

T, UT,
[with

ST=Donai nBase<Domai nTr ai t s<Loc<1>>>:: Storage_t,

T=Domai nTrai tsScalar<int *, int *>::PointDomain_t,

UT=Donai nTraitsScalar<int *, int *>::PointDomin_t,

wi | dcard=fal se]" at |ine 395 of "src/Domai n/Domai n. h"
instantiation of "void Domai n<l, DT>::setDomain(const T & [wth

DT=Domai nTr ai t s<Loc<1>>, T=Domai nTraitsScal ar<int *, int

*>::PointDomain_t]" at line 234 of "src/Domain/Loc. h"
instantiation of "void CopyLocStoragelnmpl<Dim T, 1,

fal se>::copy(Loc<Dinkt & const T & [with D nml, T=int

*1" at line 242 of "src/Domain/Loc. h"

instantiation of "void CopyLocStorage<bDim T>::copy(Loc<Di ne &,

file:///E|/r2/html/tut-13.html (5 of 10) [11/1/1999 7:02:56 PM]



POOMA Tutorial 13: Compiling, Running, and Debugging POOMA Programs

const T & [with DDmel, T=int *]" at line 410 of
"src/ Domai n/ Loc. h"

instantiation of "Loc<1>::Loc(const Tl & [with Tl=int *]" at line
78 of "src/Array/Array.h"

instantiation of "ArrayVi ewReturn2<Engi ne, Domain, 1>::Type_t
ArrayVi ewRet ur n2<Engi ne, Donmin, 1>::eval (const Engine
&, const Domain & [w th Engi ne=Engi ne<1, doubl e,
Brick> Domain=int *]" at line 89 of "src/Array/Array.h"

instantiation of "ArrayVi ewReturn<Engi ne, Domai n>:: Type_t
ArrayVi ewRet ur n<engi ne, Domai n>:: eval (const Engi ne &,
const Domain & [wth Engi ne=Engi ne<l, double, Brick>,
Domain=int *]" at line 418 of "src/Array/Array.h"

instantiation of "ArrayVi ewRet urn<Const Array<bDim T,
Engi ne>: : Engi ne_t, Tenpor ar yNewDomai n1<Const Array<Di m
T, Engine>::Domain_t, Subl>::SliceType_t>::Type_t
Array<Dim T, Engi neTag>::operator()(const Subl &) const
[with D mel, T=doubl e, Engi neTag=Brick, Subl=int *]" at

line 10 of
"test.cpp"
"src/ Domai n/ NewDomai n. h", line 753: error: nane followed by "::" nust be a

cl ass or nanmespace nane
SliceType_t retval = Al Donmi n<SliceType_t::di nensions>();
N

det ected during:

instantiation of "NewDonmai n1<T1>::SliceType_t
NewDomai n1<T1>:: conbi neSlice(const UT & const Tl &)
[wWth Tl=int *, UT=Interval <1>]" at line 128 of
"src/ Array/ Const Array. h"

instantiation of "TenporaryNewDonmai nl<Domai n, Sub>:: SliceType t
Tenpor ar yNewDormai n1<Donai n, Sub>:: conbi neSli ce(const
Domain & const Sub &) [wi th Domai n=I nterval <1>, Sub=int
*1" at line 419 of "src/Array/Array. h"

i nstantiation of "ArrayVi ewRet urn<Const Array<Dim T,
Engi ne>: : Engi ne_t, Tenpor ar yNewDomai n1<Const Array<Di m
T, Engine>::Domain_t, Subl>::SliceType_t>::Type_t
Array<Dim T, Engi neTag>::operator()(const Subl & const
[with D mel, T=doubl e, Engi neTag=Brick, Subl=int *]" at

line 10 of
"test.cpp”
"src/Domain/ All Domain.h", line 84: error: class

"PoomaCTAssert <<error-constant>>" has no nenber "test"
CTAssert(Dim > 0);
AN

det ected during:

instantiation of
"Al| Donmai n<Di n>: : Al |l Donai n() [with D me<error-constant>]"
at line 753 of "src/Donmai n/ NewDonai n. h"

instantiation of "NewDonai n1<T1>:: SliceType_t
NewDomai n1<T1>:: conbi neSlice(const UT & const Tl &)
[wWith Tl=int *, UT=Interval <1>]" at line 128 of
"src/ Array/ Const Array. h"

instantiati on of "TenporaryNewDomai nl<Domai n, Sub>::SliceType_t
Tenpor ar yNewDormai n1<Donai n, Sub>:: conbi neSli ce(const
Domain & const Sub & [w th Donmi n=I nterval <1>, Sub=int

file:///E|/r2/html/tut-13.html (6 of 10) [11/1/1999 7:02:56 PM]



POOMA Tutorial 13: Compiling, Running, and Debugging POOMA Programs

*1" at line 419 of "src/Array/Array. h"

instantiation of "ArrayVi ewRet urn<Const Array<Dim T,
Engi ne>: : Engi ne_t, Tenpor ar yNewDomai n1<Const Array<Di m
T, Engine>::Domain_t, Subl>::SliceType_t>::Type_t
Array<Dim T, EngineTag>::operator()(const Subl &) const
[with D mel, T=doubl e, Engi neTag=Brick, Subl=int *]" at

[ine 10 of
"test.cpp"
"src/ Domai n/ NewDormai n. h", line 753: error: no suitable conversion function

from"Al |l Domai n<<error-constant>>" to
"NewDonai nl<int *>::SliceType_t" exists
SliceType_t retval = Al Dorai n<SliceType_t::di nensions>();
N

det ected during:

instantiation of "NewDonai n1<T1>:: SliceType_t
NewDomai n1<T1>:: conbi neSlice(const UT & const Tl &)
[wWth Tl=int *, UT=Interval <1>]" at line 128 of
"src/ Array/ Const Array. h"

instantiation of "TenporaryNewDomai nl<Domai n, Sub>::SliceType_t
Tenpor ar yNewDormai n1<Donai n, Sub>:: conbi neSli ce(const
Domain & const Sub & [w th Donmi n=I nterval <1>, Sub=int
*1" at line 419 of "src/Array/Array. h"

instantiation of "ArrayVi ewRet urn<ConstArray<Dim T,
Engi ne>: : Engi ne_t, Tenpor ar yNewDomai n1<Const Array<Di m
T, Engine>::Domain_t, Subl>::SliceType t>::Type_t
Array<Dim T, EngineTag>::operator()(const Subl &) const
[with D mrl, T=doubl e, Engi neTag=Brick, Subl=int *]" at

line 10 of
"test.cpp"
"src/ Domai n/ NewDonai n. h", line 131: error: expression nust have cl ass type

Domai nTrai t s<RT>:: get Donai n(rt, DS + i).setDomai n(
N
det ected during:

instantiation of "void Conbi neSliceDomai NWC<RT, UT, CT, DS,
SliceDS, incl, we>::conbine(RT & const UT & const CT
&) [with RT=NewDomai nl<int *>::SliceType_t,
UT=Interval <1>, CT=int *, DS=0, SliceDS=0, incl=false,
wc=fal se]" at |ine 207

instantiation of "void Conbi neSliceDomai n<RT, UT, CT, DS, SliceDS,
i ncl>::conbine(RT & const UT & const CT & [with
RT=NewDomai nl<i nt *>::SliceType_t, UT=Ilnterval <1>,
CT=int *, DS=0, SliceDS=0, incl=false]" at line 766

instantiation of "RT &\ewDonmi n1<T1>::fill Slice(RT & const UT &,
const T1 & [with Tl=int *, RT=NewDonai nl<int
*>::SliceType_t, UT=Interval <1>]" at |ine 754

instantiation of "NewDonmai n1<T1>::SliceType_t
NewDomai n1<T1>:: conbi neSlice(const UT & const Tl &)
[wWith Tl=int *, UT=Interval <1>]" at line 128 of
"src/ Array/ Const Array. h"

instantiati on of "TenporaryNewDonmai nl<Domai n, Sub>::SliceType_t
Tenpor ar yNewDormai n1<Donai n, Sub>:: conbi neSli ce(const
Domain & const Sub & [w th Donai n=I nterval <1>, Sub=int
*1" at line 419 of "src/Array/Array. h"

instantiation of "ArrayVi ewRet urn<Const Array<bDim T,
Engi ne>: : Engi ne_t, Tenpor ar yNewDomai n1<Const Array<Di m

file:///E|/r2/html/tut-13.html (7 of 10) [11/1/1999 7:02:56 PM]



POOMA Tutorial 13: Compiling, Running, and Debugging POOMA Programs

T, Engine>::Domain_t, Subl>::SliceType t>::Type_t
Array<Dim T, EngineTag>::operator()(const Subl &) const
[with D mr1l, T=doubl e, Engi neTag=Brick, Subl=int *]" at
[ine 10 of

"test.cpp”

Thefirst thing to keep in mind is that the error messages are telling you exactly what went wrong in your program.
However, like a patient speaking to a doctor, the compiler is reporting symptoms: "1t hurts, here, here, and here.” It isn't
saying directly, "Y ou have accidentally used ani nt * toindex array z."

Second, start at the first message and work down. As you can see, C++ compilers will often report several different error
messages for the same mistake. The first oneis usually the most direct statement of what's wrong so start there. In our
example, KCC isreporting an error at line 416 of the POOMA header Ar r ay/ Arr ay. h. Thisline reads:

CTAssert (SDomei n_t: : di mensi ons == di nensi ons);

Itis specifically complaining about the fact that it doesn't think SDomai n_t isaclass or namespace name, which means
that qualifying it with "; ; ' doesn't make sense. Thisisasymptom, but it isn't very useful, especially to someone who isn't
familiar with the innards of POOMA. It may be disconcerting that the error message isin POOMA code. However, it is
simply the reality with templates that bad user code can result in atemplate error deep inside POOMA.

Third, the rea information isin the instantiation chain. By "instantiation chain", we mean the set of templates, starting with
your code, that the C++ compiler was instantiating when it ran into trouble. In KCC errors, the instantiation chain can be
recognized by a series of lines beginning with "detected during: instantiation of". The best way to read these chainsis from
the instantiation closest to user code to that deepest in POOMA. In the first error message, thisis easy because thereis only
oneinstantiation listed. KCC claimsit trying to instantiate:

Array<Dim T, Engine>::operator()(const Sub &)

where: Di mis1, Tisdoubl e, Engi neTag isBri ck, and Subl isi nt *, at line 10 of our example program. Now, this
is useful because we see that the problem is with the line;

z(PP) = p;

Thereisindeed acal tooper at or () call onthat ling, i.e. z( PP) . Moreover, KCC istelling us that the argument we
passed in hasatypei nt *, whichis not alegal domain type. If we change z( PP) to z( p) , the problemis solved.

The other error messages give essentially the same information in different ways. More complicated situations may require
following the instantiation chain through several levels. The most important thing is not to get blinded by the quantity of
output.

The error messages produced by EGCS are formatted differently, but the procedure for interpreting them is the same.
Unfortunately, CodeWarrior Professional 4 does not print out an instantiation chain, which makes diagnosing template
problems very difficult. Metrowerks knows about this problem and is fixing it. However, until then, we can only suggest
compiling your code with EGCS or KCC as a means to diagnose difficult problems.

Running

POOMA Runtime Arguments

The following run-time flags can be used to control various aspects of the behavior of a POOM A-based application:
« --poona-debug N: setthe debug output level to N.
o --poona- bl ocki ng- expr essi ons: force POOMA to block after every data-parallel statement.
o --poonma-threads N: explicitly set the number of threadsto be used (i.e. the degree of concurrency).
« --poona- hel p: print out asummary help message showing the available flags.

The set of flags shown below control 1og messages, warnings, debugging output, and so on. All of these options have a- no
form aswell, such as- - pooma- noi nf o.

file:///E|/r2/html/tut-13.html (8 of 10) [11/1/1999 7:02:56 PM]



POOMA Tutorial 13: Compiling, Running, and Debugging POOMA Programs

e --poonma-i nf o: print info messages.

e --pooONMAa-wWar n: print warning messages.

e --pooONMa-err: print error messages.

« --poonma-1og fil e:logoutputtofile.

« --poona- st at s: print runtime statistics at end of execution.

The first four of the flags above are related to a set of macros defined in the sr ¢/ Poorma/ Poona. h header file. Thefirst
of these, POOVA_PRI NT( st ream t ext ), prints amessage to a given stream in a thread-safe manner. The second,
POOVA_PRI NTDEBUX | evel , t ext ), prints amessage to the POOMA debug output stream POOVA: : pdebug if the
POOVA PRI NTDEBUG option was sel ected when POOMA was built. The last three macros are POOVA | NFQ(t ext ),
POOVA_WARN(t ext ), and POOVA _ERROR(t ext ), which print messages to the information, warning, and error output
streams (Poona: : pi nf o, Poona: : pwar n, and Pooma: : per r respectively). These four streams are actually
predefined | nf or mobjects (described in the tutorial on Text 1/0).

There are aso flags that globally affect certain POOMA classes:
e --poonma- noconpr ess: disable compression of compressible bricks.
« --poona- nodef erred-guardfill s: disabledeferred filling of guards.

Finally, these three flags are used by POOMA's SMARTS threading package, and are not fully implemented in this release:
e --poona-snart s-hardi nit: memory alocation will respect hardware affinity.
e --poona-snart s- har dr un: taskswill only be run by threads with the correct hardware affinity.
o --poona-snart s-1 ockt hr eads: the operating system will not migrate threads.

Object-Based Initialization

Asmentioned in the first tutorial, POOMA can be initialized by passing ar gc and ar gv toPoona: :initialize(),or
by creating an instance of Pooma: : Opt i ons, configuring it, and then passing that options object to
Pooma: :initialize().Thus, instead of using:

Pooma::initialize(argc, argv);
aprogram can do the following:

Pooma: : Opti ons opts; /! create the options object
opts. concurrency(8); /] tell POOVA to use 8 threads
opts.logfile("pooma.log"); /1 turn on output |ogging
Pooma::initialize(opts); /1 initialize Poona

These two methods can be combined, which allows a program to override any options the user might have specified:

Pooma: : Opti ons opts(argc, argv); /1 parse command |ine
opts. concurrency(8); /1 but always use 8 threads
Pooma: :initialize(opts); /1 actual initialization

For more information on the configuration options available to POOMA programs, please see the POOMA documentation.

Debugging

Debugging the templated classes and functions in POOMA codes is challenging. Many debuggers have difficulty with
finding and stopping in the particular template instance you're interested in. Few, if any, debuggers alow invocation of
member functions from objects, whether they are instances of template or nontemplate classes.

Future revisions of thistutorial may include more information on debugging. For now, we include some anecdotal
information that may be helpful:

The Metrowerks CodeWarrior Professional 5.2 debugger does a good job of understanding template code, and correctly
demangling symbol names. The Windows version is much less successful than the Macintosh version in maintaining proper

file:///E|/r2/html/tut-13.html (9 of 10) [11/1/1999 7:02:56 PM]



POOMA Tutorial 13: Compiling, Running, and Debugging POOMA Programs

state when you trace into template functions and template or nontemplate members of template classes. On Windows, it
often fails to recognize any local variables.

On IRIX 6.5, we have had some success with dbx, Tot al Vi ew(TotalView 3.9 or higher, Etnus (http://www.etnus.com)),
and SGI's cvd debuggers. The following table indicates combinations of compilers and debuggers on IRIX which are

compatible:
TotalView dbx cvd
KCC compatible incompatible | incompatible
CcC compatible compatible compatible
EGCS(gt++) incompatible compatible compatible*

Compatible compiler/debugger combinations on IRIX 6.5.
*Object member access sometimes crashes cvd with EGCS.

These debuggers fail in some cases to demangle names of objects which are instances of template classes.

See also the discussion of thedbpr i nt () function family. This describes how to set up function prototypes allowing you
to examine data values from POOMA containerslike Fi el d and Ar r ay interactively from some debuggers.

[Prev] [Home] [Next]
Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/tut-13.html (10 of 10) [11/1/1999 7:02:56 PM]


http://www.etnus.com/
http://www.acl.lanl.gov/pooma/

POOMA Tutorials: A Quick Self-Test

Parallel"Object-Oriented ™
Methods.and Applications ¥ &

POOMA Tutorials
A Quick Self-Test

Contents:
Introduction
Questions
Object Creation
Virtual Methods and Inheritance
Trait Classes
Values, References, and Constant References
Answers
Object Creation
Virtual Methods and Inheritance
Trait Classes
Values, References, and Constant References

Introduction

The implementation of POOMA uses many advanced or obscure features of the ANSI/ISO C++ standard. Itsinterfaceis
less exacting, but programmers must still have a solid understanding of C++ to useit effectively. If you feel comfortable
with the questions below, and their answers, you should have little or no difficulty using POOMA. If, on the other hand, you
find the questions and their answers difficult, you may wish to look at some of the books in the recommended reading

before trying to use thislibrary.

Questions

Object Creation

Assume that a default constructor, a copy constructor, and an overloaded assignment operator have been defined for the
class Fr ed. How many timesis each called when the following program is executed?

Fred red;

Fred func(
Fred cyan
) {

Fred magent a;

magenta = cyan,;

return magent a;
int main()

Fred green = red;

file:///E|/r2/html/self-test.html (1 of 6) [11/1/1999 7:03:02 PM]



POOMA Tutorials: A Quick Self-Test

bl ue = func(green);
return O;

}
Virtual Methods and Inheritance

What does the following program print out?

#i ncl ude <i ostreanp
#i ncl ude <i omani p>
usi ng nanespace std;

class A
{
public :
A() { cout
virtual void left() cout
voi d right() { cout

~

b

class B : public A
{
public :
B()
void left()
void right()

cout
cout
cout

It Nt Wt

b

int main()

{
A a;
a.left();
a.right();
cout << endl

B b;
b.left();
b.right();
cout << endl

A* ap = &b;
ap->left();
ap->right();
cout << endl

A* ap = (A*) &b;
ap->left();
ap->right();
cout << endl

ap->A::left();
((A*)ap)->left();
((A*)ap)->right();

return O;

file:///E|/r2/html/self-test.html (2 of 6) [11/1/1999 7:03:02 PM]

<< "
<< "
<< "

<<
<<
<<

>>>

IIB
IIB
IIB

new' << endl; }
left" << endl
right" << endl

new' << endl; }
left" << endl
right" << endl

}

}

}

}



POOMA Tutorials: A Quick Self-Test

Trait Classes

What does the following program print out?

cl ass Bl ue

{
public :
enum { Val = 240; };
1

t enpl at e<cl ass T>
cl ass Green

{
public :
const int Val = 88;
}
t enpl at e<cl ass T>
cl ass Red
{
public :
enum{ Val = T::Val/2; };
}
int main()
{
cout << Blue::Val << endl;
cout << Green<Blue>::Val << endl;
cout << Red<Blue>::Val << endl;
cout << Red<G een<Bl ue>>::Val << endl;
cout << Red<G een<G een<Bl ue>>>::Val << endl;
cout << Red<Red<G een<Bl ue>>>::Val << endl;
return O;
}

Values, References, and Constant References

Which of thecallstoval ue(),ref erence, and const _r ef er ence below produce errors during compilation?

voi d val ue(int x)

{}

voi d reference(int & x)

{}

voi d const_reference(const int & x)
{}

int main()

{

int x;
const int y = 2;

val ue(1);
val ue(x);
val ue(y);
val ue(x+1);

file:///E|/r2/html/self-test.html (3 of 6) [11/1/1999 7:03:02 PM]



POOMA Tutorials: A Quick Self-Test

reference(l);
ref erence(x);
reference(y);
reference(x+1);

const _reference(l);
const _reference(x);
const _reference(y);
const _reference(x+1);

return O;

}
Answers

Object Creation

The listing below shows where constructor calls and assignments occur:

Fred red;

Fred func(
Fred cyan

)

Fred nagent a;
magenta = cyan;
return nagent a;

}

int main()

{
Fred green = red;
bl ue = func(green);
return O;

}

Virtual Methods and Inheritance

The program prints the following:

A new
A left
A right

A new
B new

file:///E|/r2/html/self-test.html (4 of 6) [11/1/1999 7:03:02 PM]

11

11
11

11
11
11
11
11
11

Il
Il
11
11
11
11
11

11
Il
11

11
11

defaul t constructor

copy constructor
(pass by val ue)

default constructor

assi gnnent operator
copy constructor
(magenta is copied into
a nanel ess tenporary to
be returned)

copy constructor

copy constructor tw ce
('green' is copied into
‘cyan' during call, and
tenmporary return val ue
is copied into 'blue" on
exit)

A A()
A :left()
A :right()

B::B() invokes A :A()
body of B::B()



POOMA Tutorials: A Quick Self-Test

B left
B right

B left
A right

| eft
ri ght

| ef t

B
A
Aleft
B
A right

Trait Classes

Il
11

11
11

11
11

11
11
11

B::left()
B::right()

is virtual
is not virtual

left()
right()

cast on right irrel evant
right() is not virtua

exact nmethod naned
cast on left irrel evant
right() is not virtua

The key hereisthat Gr een always definesits own Val , while Red definesits Val in terms of its argument class's Val .

The answer istherefore;

int main()

{
cout << Blue::Val << endl; /1 240
cout << Green<Blue>::Val << endl; /1l 88
cout << Red<Bl ue>::Val << endl; /1 120
cout << Red<G een<Bl ue>>::Val << endl; /1 44
cout << Red<G een<G een<Bl ue>>>::Val << endl; // 44
cout << Red<Red<G een<Bl ue>>>::Val << endl; [l 22
return O;

}

Values, References, and Constant References

The only outright errors occur when a constant value (such as aliteral or the result of an arithmetic expression) is passed
where a non-constant reference parameter is expected. There is also awarning when x is used before being assigned a value:

int main()
o
int Xx;
const int y = 2;
val ue(1);
val ue(x);
val ue(y);
val ue(x+1);

reference(1);
ref erence(x);
reference(y);
reference(x+1);

const _reference(l);
const _reference(x);
const _reference(y);
const _reference(x+1);

return O;

Il

11

11
11

file:///E|/r2/html/self-test.html (5 of 6) [11/1/1999 7:03:02 PM]

War ni ng, val ue used before set.

Error. Non-const reference to const.
Error. Non-const reference to const.
Error. Non-const reference to const.



POOMA Tutorials: A Quick Self-Test

[Prev] [Home] [Next]
Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/self-test.html (6 of 6) [11/1/1999 7:03:02 PM]


http://www.acl.lanl.gov/pooma/

POOMA Tutorials: Managing Threads Explicitly

Parallel Object-Oriented ~ 4
Methods.and Applications ™

POOMA Tutorials
Managing Threads Explicitly

The program shown in this appendix is the most complicated to appear in these tutorials. Building on tutoria 4, it sumsthe
valuesin an array, taking the layout of that array into account. Unlike the multi-patch and layout examples of tutorial 4,
however, this program explicitly spawns threads to perform the accumulation on each patch of the array.

Much of this code should seem familiar---the specialized accunul at eW t hLoop() functions, for example, have aready
been discussed. The novelty liesin the classes Resul t Hol der and Ar r ayAccunul at or , the templated function
spawn_accunul at e() , and the specialized accumulation function accunul at e() . These are all discussed briefly after
the code (whichisin exanpl es/ Pat ches/ Thr eaded/ Accumnul at e. h intherelease) is presented.

#i f ndef ACCUMULATE_H
#defi ne ACCUMULATE_H

#i ncl ude <pt hread. h>

tenplate<int D, class T, class E> class ConstArray;
tenpl ate<int D> class UnifornmaidLayout;

[l The guts of the accurul ation algorithm
/1 Specialized here for dinension 1, 2 and 3.
/[l Can't call these 'accumnul ate' because it woul d be anbi guous.

tenpl ate<class T, class E>
inline T accunul at eWt hLoop(
const ConstArray<l, T, E> & X

){
T sum = O;
int fO = x.first(0);
int 10 = x.last(0);
for (int 10=f0;i0<=l0; ++i0)
sum += x(i0);
return sum
}

tenpl ate<class T, class E>
inline T accunul ateWt hLoop(
const ConstArray<2, T, B> & X

){
T sum = O;
int fO = x.first(0);
int f1 = x.first(1);
int 10 = x.last(0);
int 11 =x.last(1);
for (int i1=f1; il<=l1l; ++i1l)
{

file:///E|/r2/html/threading.html (1 of 6) [11/1/1999 7:03:10 PM]



POOMA Tutorials: Managing Threads Explicitly

for (int 10=f0;i0<=l0; ++i0)
{

}
}

return sum

sum += x(i 0, i1);

}

tenpl ate<class T, class E>
inline T accurul at eW t hLoop(
const ConstArray<3, T, B> & X

){
T sum = 0;
int fO = x.first(0)
int f1 = x.first(1);
int f2 = x.first(2)
int 10 = x.last(0);
int 11 =x.last(1);
int 12 =x.last(2);
for (int i2=f2; i2<=12; ++i2)
{
for (int i1=f1; il<=l1; ++i1)
{
for (int i0=f0;i0<=l0; ++i0)
{
sum += x(i 0, i1);
}
}
}
return sum
}
e e

/1 The user interface for accumnul ate.
[l Bricks just call the dinension specialized versions.
e I e

tenplate<int D, class T>
T accunul at e(

const ConstArray<D, T, Brick> & x
) {

}

tenplate<int D1, class T, int D2, bool S>
T accunul at e(
const Const Array<Dl, T, BrickViewD2, S>> & X

return accurul at eWt hLoop(x) ;

){

return accunul at eWt hLoop(x);
}
i L R T
/1 class Result Hol der <T>
11

/1 A class which holds the result of a calculation in such
/1 a way that you don't have to worry about how it got it.
/1l That is handled in subcl asses.

file:///E|/r2/html/threading.html (2 of 6) [11/1/1999 7:03:10 PM]



POOMA Tutorials: Managing Threads Explicitly

tenpl at e<cl ass T>
cl ass Resul t Hol der

{
publ i c:
Resul t Hol der ()
{}
virtual ~ResultHol der ()
{}
const T& get()
{
return result;
}
pr ot ect ed:
T resul t;
b
e i e T T
/1 class ArrayAccumul at or<T, ArrayType>
11

/1 A specific type of calculation that returns using a ResultHol der.
/1 This holds an array of arbitrary type and accurul ates the sum
/1 into the result.

tenpl ate<class T, class ArrayType>
class ArrayAccunul ator : public Result Hol der <T>

{
public:
/1 Remenber ny type.
typedef ArrayAccunul ator<T, ArrayType> This_t;
/1 Let the menmber data destroy itself.
virtual ~ArrayAccumul ator ()
{}
/1l A static function that will be run in a thread.
/1 The data passed in is an object of type This_t.
static void *t hreadAccumnul at e(
void * Xx
)
This_ t *y = static_cast<This_t*>(x);
y->result = accunul at e(y->array);
return Xx;
}
/1 Construct with a const ref to an array.
/1 Just renenber the array.
ArrayAccurul at or (
const ArrayType & a
) : array(a)
{}
private:

/1 Store the array by val ue since the one passed in could be
/1 a tenporary.
ArrayType array,;

file:///E|/r2/html/threading.html (3 of 6) [11/1/1999 7:03:10 PM]



POOMA Tutorials: Managing Threads Explicitly

/1 void spawn_thread(pthread_id, ArrayType)

I

/1 Spawns a thread that runs an ArrayAccunultor.

e e e

t enpl at e<cl ass ArrayType>
inline void
spawn_accumnmul at e(
pthread_t & id,
const ArrayType & a
)
/1l Typedefs to nmake the thread create nore clear.
typedef typenane ArrayType::El enent t T,
t ypedef ArrayAccunul ator<T, ArrayType> Accunul ator _t;

/1l Spawn a thread:
/1 Store the id through the reference that is passed in.
/1 The function to call is threadAccumul ate
/1 The thread data is an ArrayAccunul ator using the passed in array.
pt hread _create(& d, NULL, Accunul ator_t::threadAccunul ate,
new Accurul ator _t(a));

/1 Multipatch version.
/1 Loop over patches and accumul ate each pat ch.
I e e

tenplate<int D, class T>
T accunul at e(

const ConstArray<D, T, MiltiPatch<Unifornmrlag, Brick>> & x
){

/1l Get the GidLayout fromthe array.
const GidLayout<2>& | ayout = x.nessage(Get Gi dLayout Tag<2>());

/1 Find the nunber of patches. W' Il have one thread per patch.
int patches = layout. size();

/1l An array of thread ids.
pthread_t *ids = new pthread_t[patches];

/1 Loop over patches.
typename GidLayout<2>::iterator i= Xx.nessage(CGet GidLayout Tag<2>()).begin();
typename GidLayout<2>::iterator e= X.nessage(Get GidLayout Tag<2>()).end();

int c=0;

while (i!=e)

{
/1 Spawn a thread for each patch.
/1 cout << "spawn" << endl;
spawn_accumul ate(ids[c], x(*i));
++i ;
++C;

}

/1 Wait for all the threads to finish.
/] Get the sum from each, and accunul ate that

file:///E|/r2/html/threading.html (4 of 6) [11/1/1999 7:03:10 PM]



POOMA Tutorials: Managing Threads Explicitly

/1 in this thread.
T sum = 0O;
for (int j=0; j<c; ++4j)
{
/1 Wait for a given thread to finish.
/1 cout << "join" << endl;
void * v;
pthread join(ids[j], &);

/1l Get the result of the sumfor that thread.

/1 W don't need to know the array type for this.
Resul t Hol der <T>* s = static_cast <Resul t Hol der <T>*>(v);
cout << s->get() << endl;

sum += s->get ();

/1l Delete the data structure passed to the thread.
del ete s;

}

// Return the full sum
return sum

/1 General engine version.
/1 1f we don't know anything about the engine, at |east get the right answer.

tenplate<int D, class T, class E>
T accunul at e(
const ConstArray<D, T, B> & X

){

return accunul at eWt hLoop(x);
}
#endi f

We will not explain this code in detail, but rather will try to give an overview of the main issuesit raises and addresses. First,
the pthreads library requires programsto passavoi d* data pointer when creating a thread, but the thing you pass to the other
subroutinesis atemporary (inthiscase, x(*i ) ). The program must therefore build an object (in this case an
ArrayAccurul at or) to store the array by value. While this must be built on the heap, not the stack, the Ar r ay object is
still of course just a handle on the real data.

Second, since the program constructs an object to pass to the thread, it must destroy that object appropriately. In this case
pt hr ead_j oi n() returns (viaan argument) the pointer that was passed to it; the main accurmnul at e() function picks up
this pointer, and deletes the object it points to after casting it appropriately.

There is always the question of how the thread will return information to the rest of the code. In this case, sinceit is passing the
ArrayAccumul at or back through pt hr ead_j oi n, the Arr ayAccunul at or hasthe result of the sum for that thread.

ArrayAccumul at or needsto know the exact type of x( *i) inorder to do the accumulation, but it would be bad practice
to make the subroutine that |oops over the patches only work for one type of array. Instead, the program uses afunction called
spawn_accunul at e(), which istemplated on the actual array type.

The program has how handled the problem of generating the threads without knowing the type of x(*i ) , but it still needsto
receivethe Ar r ay Accumnul at or , and that also has the type. The return data of type T is therefore split into the base class
Resul t Hol der , which only knows the type T. The thing passed back from pt hr ead_j oi n isapointer to that; sinceits
destructor is virtual, it can safely be deleted.

The result is verbose, but not any more so than most multi-threaded programs. The biggest complication is having to introduce
the Ar r ay Accumul at or classin order to put the array being summed over on the heap instead of the stack.

file:///E|/r2/html/threading.html (5 of 6) [11/1/1999 7:03:10 PM]



POOMA Tutorials: Managing Threads Explicitly

[Prev] [Home] [Next]
Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/threading.html (6 of 6) [11/1/1999 7:03:10 PM]


http://www.acl.lanl.gov/pooma/

POOMA Tutorials: Recommended Reading

Parallel"Object-Oriented ™ &
Methods . and Applications :

POOMA Tutorials
Recommended Reading

Most computer bookstores have several shelves full of introductory books on C++. C++ for
Fortran Programmers, by Ira Pohl, is among the better of these. The book iswell organized, and
covers all of the language's most useful features without becoming bogged down in details.

After working through one of those, everyone who plans to use the language should read
Effective C++ by Scott Meyers, and Algorithms, Data Structures, and Problem Solving with C++
by Mark Weiss. Effective C++ (and its companion, More Effective C++) present dozens of
guidelines on how to use C++ effectively. Always making destructors virtual, for example, makes
it safer and easier to create heterogeneous collections of objects, while explicitly providing a copy
constructor can prevent many hard-to-find aliasing bugs.

Weiss's book on data structures is a conventional textbook, but better written and more up-to-date
than most. The author covers basic structures such as arrays, stacks, and queues before moving on
to trees, hash tables, skip lists, and their more complicated kin. His presentation and analysis are
concise and to-the-point, and the book provides complete implementations of all of the data
structures it describes.

Almost al programming books talk about design; John Lakos's Large-Scale C++ Software
Design is one of the few devoted to the problems that arise in actually implementing large

programs. The book discusses ways to (re-)organize source code to reduce compilation time
(from severa daysto overnight in one case), ease maintenance, and facilitate re-use.

Musser and Saini's STL Tutorial and Reference Guide is exactly what itstitleimplies. Thefirst
part of the book explains what the C++ Standard Template Library (STL) istrying to accomplish;
the middle introduces the STL's major features, and shows how they are used, while the back of
the book is areference guide.

Austern's Generic Programming and STL Book provides an excellent introduction to generic
programming by introducing the notions of concepts and models. According to Austern, "a
concept describes a set of requirements on atype, and when a specific type satisfies al of those
requirements, we say that it isamodel of that concept.” A concept is not a C++ class, function, or
template; however, any of these entities can serve as amodel of a concept. Using these ideas,
Austern also provides a complete reference for the STL.

file:///E|/r2/html/reading.html (1 of 2) [11/1/1999 7:03:18 PM]



POOMA Tutorials: Recommended Reading

Finally, see the POOMA web site for on-line presentations and technical papers describing the
POOMA framework.

Bibliography

John Lakos: Large-Scale C++ Software Design. Addison-Wesley, 1997, ISBN 0201633620.

Ira Pohl: C++ for Fortran Programmers. Addison-Wesley, 1997, ISBN 0201924838.

Scott Meyers: Effective C++ (2nd ed.). Addison-Wesley, 1997, ISBN 0201924889.

Scott Meyers:. More Effective C++. Addison-Wesley, 1995, ISBN 020163371X.

David R. Musser and Atul Saini: STL Tutorial and Reference Guide. Addison-Wesley, 1996,
ISBN 0201633981.

Matthew H. Austern: Generic Programming and the STL: Using and Extending the C++ Standard
Template Library. Addison-Wesley, 1998, ISBN 0201309564.

Mark Weiss. Algorithms, Data Structures, and Problem Solving C++. Addison-Wesley, 1996,
ISBN 0805316663.

[Prev] [Home] [Next]
Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/reading.html (2 of 2) [11/1/1999 7:03:18 PM]


http://www.acl.lanl.gov/pooma/presentations.html
http://www.acl.lanl.gov/pooma/papers.html
http://www.amazon.com/exec/obidos/ASIN/0201633620
http://www.amazon.com/exec/obidos/ASIN/0201924838
http://www.amazon.com/exec/obidos/ASIN/0201924889
http://www.amazon.com/exec/obidos/ASIN/020163371X
http://www.amazon.com/exec/obidos/ASIN/0201633981
http://www.amazon.com/exec/obidos/ASIN/0201309564
http://www.amazon.com/exec/obidos/ASIN/0201309564
http://www.amazon.com/exec/obidos/ASIN/0805316663
http://www.acl.lanl.gov/pooma/

POOMA Tutorials: Legal Notice

Parallel Object-Oriented ™

Methods.and Applications "

POOMA Tutorials
Legal Notice

This software and ancillary information (herein called "SOFTWARE") called POOMA (Paralel
Object-Oriented Methods and Applications) is made available under the terms described here.
The SOFTWARE has been approved for release with associated LA-CC Number LA-CC-98-65.

Unless otherwise indicated, this SOFTWARE has been authored by an employee or employees of
the University of California, operator of the Los Alamos National Laboratory under Contract No.
W-7405-ENG-36 with the U.S. Department of Energy. The U.S. Government has rights to use,
reproduce, and distribute this SOFTWARE, and to allow othersto do so. The public may copy
and use this SOFTWARE, FOR NONCOMMERCIAL USE ONLY, without charge, provided
that this Notice and any statement of authorship are reproduced on all copies. Neither the
Government nor the University makes any warranty, express or implied, or assumes any liability
or responsibility for the use of this SOFTWARE.

If SOFTWARE is modified to produce derivative works, such modified SOFTWARE should be
clearly marked, so as not to confuse it with the version available from LANL.

For more information about POOMA, send e-mail to pooma@acl.lanl.gov, or visit the POOMA
web page at http://www.acl.lanl.gov/pooma.

[Prev] [Home]

Copyright © Los Alamos National Laboratory 1998-1999

file:///E|/r2/html/legal.html [11/1/1999 7:03:22 PM]


mailto:pooma@acl.lanl.gov
http://www.acl.lanl.gov/pooma/
http://www.acl.lanl.gov/pooma/

	Local Disk
	POOMA Tutorials
	POOMA Tutorials: Introduction
	POOMA Tutorials: Background and Terminology
	POOMA Tutorial 1: A Laplace Solver Using Simple Jacobi Iteration
	POOMA Tutorial 2: Red/Black Update
	POOMA Tutorial 3: Calculating Residuals
	POOMA Tutorial 4: Further Topics
	POOMA Tutorial 6: Indirect Addressing
	POOMA Tutorial 7: Meshes, Centerings, Geometries, and Fields
	POOMA Tutorial 8: More on Meshes, Centerings, Geometries, and Fields
	POOMA Tutorial 9: Particles
	POOMA Tutorial 10: Particles and Fields
	POOMA Tutorial 11: Text Input and Output
	POOMA Tutorial 12: Object I/O
	POOMA Tutorial 13: Compiling, Running, and Debugging POOMA Programs
	POOMA Tutorials: A Quick Self-Test
	POOMA Tutorials: Managing Threads Explicitly
	POOMA Tutorials: Recommended Reading
	POOMA Tutorials: Legal Notice


